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APPROXIMATE METHOD FOR CALCULATING TRANSONIC FLOW 

ABOUT LIFTING WING-BODY CONFIGURATIONS 

Richard W. Barnwell 
Langley Research Center 

SUMMARY 

The three-dimensional problem of transonic flow about lifting wing-body configu- 
rations is reduced to a two-variable computational problem with the method of matched 
asymptotic expansions. 
tion. 
and the presence of solid, slotted, o r  porous tunnel walls. 
the method extends from zero to the supersonic value at which the wing leading edge 
becomes sonic. 
of lift is developed. 

The computational problem is solved with the method of relaxa- 
The method accounts for  leading-edge separation, the presence of shock waves, 

The Mach number range of 

A modified form of the transonic area rule which accounts for the effect 
This effect is explained from simple physical considerations. 

INTRODUCTION 

It is well known that there are approximate methods fo r  calculating transonic flow 
about lifting swept-wing configurations with span-length ratios of order  one and small 
reduced span-length ratios the reduced span is the product of the span and the factor {m where M m  is the f ree-s t ream Mach number) if the angle of attack is suffi- 
ciently small .  A recent example of such a method is that of Stahara and Spreiter (ref. 1). 
These methods a r e  based on the analysis of Heaslet and Spreiter (ref.  2) which shows 
that if the angle of attack is l e s s  than the wing thickness ratio, the problem of transonic 
flow over a wing can be separated into noninteracting thickness and cross-flow problems. 
The analysis also shows that at  these small  angles of attack, the effect of lift on the flow 
in the outer region is negligible and that the determination of the shock-wave strength 
and location is par t  of the thickness problem. 
consistent with those of Oswatitsch and Keune (ref. 3), who have proved that a t  transonic 
speeds the flow in the outer region of a nonlifting wing is mathematically equivalent to 
that about the axisymmetric body with the same cross-sectional a r e a  distribution (the 
equivalent body), and Whitcomb (ref. 4), who has demonstrated experimentally that the 
transonic wave drag of a nonlifting wing-body is almost the same as that on the equivalent 
body. The basic solution to the cross-flow problem is the slender-wing solution of 

( 

It should be noted that these resul ts  are 



Jones (ref. 5). 
by Spreiter (ref. 6) and Ward (ref. 7). It should be noted that slender-wing theory is 
applicable to wings with span-length rat ios  of order  one only fo r  Mach numbers very 
close to one and not throughout the entire transonic range. 

This solution has been generalized for  lifting wing-body configurations 

Panel methods based on the linearized potential equation have been applied to 
lifting configurations in the high subsonic and low supersonic flow regimes where tran- 
sonic phenomena are present. 
entire transonic range because of the obvious inability of l inear methods to resolve the 
shock waves associated with transonic flow properly. 

However, these methods cannot be applied throughout the 

At the present t ime three-dimensional finite -difference methods a r e  being developed 
f o r  application to the problem of transonic flow about lifting wing-body configurations. 
These methods, which are formulated in t e r m s  of the velocity potential, employ the suc- 
cessive line overrelaxation procedure introduced by Murman and Cole (ref,  8). 
and Ballhaus (ref. 9) and Schmidt, Rohlfs, and Vanino (ref. 10) have obtained solutions for  
infinite-cylinder swept-wing combinations and Klunker and Newman (ref. 11) have treated 
infinite -cylinder rectangular -wing combinations. It is probable that methods of this type 
will be generalized so that configurations with finite-length bodies can be treated. 
should be noted that these methods require large amounts of computing time and com- 
puter storage since the problem being calculated is three dimensional. 
methods have not been developed to the point where the phenomenon of leading-edge sep- 
aration can be treated. 

Bailey 

It 

Also, these 

The purpose of this paper is to present an approximate method for  calculating tran- 
sonic flow about lifting configurations with span-length rat ios  of order  one and small  
reduced-span-length ratios which a r e  at angles of attack large enough to insure that the 
effects of lift and thickness are comparable in the outer region. The approximations 
used in the method are based on the analyses of Barnwell (refs. 1 2  and 13) and Cheng and 
Hafez (refs. 14 and 15), which show that in this angle-of-attack range the thickness prob- 
lem is dependent on the lift solution. These analyses a r e  used to reduce the three- 
dimensional problem of transonic flow about a lifting swept-wing configuration to a two- 
variable computational problem which is solved with a finite-difference method of the type 
introduced by Murman and Cole (ref. 8). It should be noted that a preliminary version 
of the present method was presented in reference 16, and that some resul ts  obtained with 
the final version are given in reference 17. A description of the computer program fo r  
the present method and a user ' s  manual a r e  given in reference 18. 
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SYMBOLS 

Where applicable, values are given in both SI and U.S. Customary Units. 

A coefficient of quasiconical lift potential (see eq. (26)) 

coefficients in finite-difference formula (F7) given by equations (F8) 

wing-geometry parameters  

Ak,Bk,Ck 

A11A2 

- 
7iOyA1,x2y . . .,AN coefficients of Fourier s e r i e s  (eq. (D19)) 

a 

- -  
aw,cw 

B 

BW 

B1’B2 

b 

bl’b2 

C 

CL 

cP 

CW 

C(Y) 

constant of proportionality in equation (B21) for  angle of attack 

slot width and slot spacing 

slot-width parameter and slot- thickness parameter 

coefficient of proportionality in equation (74) for  effective cross-sectional 
area of lifting configuration 

coefficient of wall-induced contribution to velocity potential (see eq. (34)) 

wing-geometry parameters  

wing semispan 

apparent semispans in quasiconical model (see fig. 39) 

body geometry parameter  

lift coefficient 

pressure  coefficient 

coefficient of wall-induced contribution to velocity potential (see eq. (35))  

chord at span station y 

3 



distances depicted in figure 39 c1’c2 

E(k) complete elliptic integral of second kind with modulus k 

F(x,r,o) 

Fe (x) 

f(x) nondimensional dipole strength distribution 

f v ( 4  contribution to f(x) due to vortex (see eq. (27)) 

G(x,r,w) function in equation (F3) 

G1 (X) , GQ (XI 

g(x) 

g,(x) ,g2,2 (x),g2,1(x) 

forcing function in equation (F2) 

nondimensional radius of equivalent body 

arbi t rary functions in equations (B26) and (B28) 

lift function defined by equation (D13) 

6’ 92,2, and @2,1 functions of x in inner potentials r#~ 

source-strength function defined by equation (B17) 

function defined by equation (D18) 

constant of proportionality relating M, and 6 (see eqs. (B5) and (B6)) 

complete elliptic integral of f i r s t  kind with modulus k 

wing-geometry parameter defined by equation (C12) 

wing- geometry parameters  

lift function defined by equation (D12) 

total lift on portion of configuration between nose and longitudinal location x 
given by equation (64) 

lift on portion of configuration between nose and longitudinal location x due 
to nonlinear effects 



L+) lift on portion of configuration between nose and longitudinal location x 
due to linear effects 

Q longitudinal length scale, configuration length unless otherwise noted 

M local Mach number 

Mn 

Moo free-s t ream Mach number 

m(x7y) - z(m, - m-) 

mp (x,y/y2) 

m+(x7y) 

Mach number of component of upstream flow normal to shock 

- 1 

nondimensional function in equation (B31) 

function in equation (B12) for  potential near configuration 

exponent in equations for equivalent body radius (see appendix A) 

coefficient in equation (33) for porous-wall boundary condition 

function defined by equation (14) o r  ( E l )  

coefficient of equation (D29) given by equation (D30) 

coefficient of equation (D40) given by equation (D41) unless otherwise noted 

radial coordinate 

outer radial variable v r  

radius of equivalent body 

value of r at  which body boundary condition is applied 

Mirels'  S function fo r  wings with swept trailing edges 

effective cross-sectional area of lifting wing body (see eq. (74)) 

5 



reference area for  lift coefficient ‘ref 

t maximum radius of equivalent body 

u, free-s t ream velocity 

u,v,w perturbation velocity components in axial, radial, and cross-flow directions, 
re spec t ively 

- 
U x-component of perturbation velocity on surface of wing alone 

ua, (XI average velocity a t  points near axis given by equations (57) 

Va 
a@a i- - a@a _ - -  

aY az 

W(X,X) complex potential 

complex potential for flow due to vortices WV 

- 
W 

X 

XV 

X 

XC 

downwash fo r  wing alone 

complex variable in cross-flow plane, y + iz 

value of X where vortex core is located 

longitudinal coordinate 

quantity used in expression for  equivalent body (see appendix A) 

value of x where wing leading edge intersects  body surface 

values of x used in description of wing planform (see appendix A) 

values of x where different segments of wing planform intersect 

complex function defined by equation (C4) 

value of Y at  vortex-core location 

6 



Y spanwise variable 

6 equivalent-body thickness ratio, t /Q 

€1, €2, € 3  

rl 

gage functions of outer expansion (eq. (B3)) given by equations (B5) and (B22) 

spanwise coordinate in Z-plane given by equation (25) 

1 7 

YV(4 

Y 2(x) ,Y  1(x) 

spanwise location of vortex core in physical plane 

functions giving location of wing leading and trailing edges, respectively 

YI(x),YII(x),Y~(x) straight-line segments used to construct planform (see appendix A) 

yIo,yIIo values of y where different segments of wing planform intersect 

Z complex function defined by equation (C9) 

Z vertical  coordinate 

value of z where vortex core is located =V 

CY angle of attack 
. 

P 

- 
P ( 4  function defined by equation (D16) 

Y ratio of specific heats 

YJX) vortex core strength 

A parameter  used to specify wing planform shape (see appendix A) 

A F  forcing function due to wal l  effects given by equation (44) 

Ax1,Ax2,Ax3 mesh spacings given by equations (F4) 

A@@’ difference in the values @a’ above and below wing 



values of q for  leading and trailing edges, respectively, given by 
equations (C 11) 

polar angle of body-oriented coordinate system 

coefficient in equation (29) for slotted-wall boundary condition 

coefficient of derivative f12q/fIx2 in equation (42) given by equation (43) 

quantity defined by equation (49) o r  (50) 

spanwise location of vortex core in Y-plane, see equation (C20) 

radial stretching parameter in outer region 

vertical  coordinate in Z-plane 

angular coordinates given by equations (D15) 

vertical  location of vortex core in Y-plane, see equation (C20) 

part  of $a due to vortex, see equation (D33) 

second-order par t  of potential cp in inner region, see equation (45) 

potentials in outer expansion (eq. (B3)) fo r  cp 

perturbation velocity potential 

coefficients of Fourier components of cp (see eq. (10)) 

potential defined by equation ( D l l )  

attached-flow portion of @a (see eq. (D33)) 

linear lift potential 

potentials in inner expansion (eq. (B?)) for  cp @l> @2,2, @2,1, $2 
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solutions to the two-dimensional Laplace equation in cross-flow plane 

polar angle of wind-oriented coordinate system 

two-dimensional Laplace operator in cross-flow plane (see eq. (4)) 

+1>+2 

w 

VZ2 

Super scripts:  

C complementary solution 

P particular solution 

* complex conjugate 

Subscripts : 

b backward difference expression 

C cent e r ed diff e re nc e exp r e s s ion 

j index for  x-coordinate 

k index for r-coordinate 

P lower surface of wing 

le leading edge of wing 

max maximum value 

min minimum value 

t trailing edge 

U upper surface of wing 

P r imes  denote differentiation with respect to x. 
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PROBLEM DESCRIPTION 

The configurations which are considered in this report  are characterized by the 
parameters  

i = O(1) 
Q 

li 6 = -  < < 1  
Q 

1 CY << 1 

where b, Q, and t a r e  the wing semispan, longitudinal length scale (configuration 
length unless otherwise noted), and maximum equivalent-body radius,  and 6 and (Y a r e  
the thickness ratio and the angle of attack in radians. The f ree-s t ream Mach number M, 
is restr ic ted to the range from zero to low supersonic. In this report  it is demonstrated 
that flow can be calculated about lifting configurations in f ree  air and in solid-, slotted-, 
and porous-wall wind tunnels. 

Wind-oriented cylindrical polar and Cartesian coordinate systems a r e  used in this  
These coordinate systems are shown in figure 1.  Wind orientation is chosen in report .  

order  to simplify the governing equation and to facilitate the enforcement of boundary 
conditions a t  the wind-tunnel wal l s .  
x-axis is in the free-s t ream direction, the positive y-axis is to starboard in the hori- 
zontal plane, and the positive z-axis is in the upward vertical  direction. 

The origin is at .the configuration nose, the positive 

r 

Figure 1. - Wind-oriented coordinate systems. 

In this report, wing-body combinations a r e  approximated by flat-plate wings and 
equivalent axisymmetric bodies. It is assumed that the wing plane passes  through the 
axis of the body so that the angles of attack of the body and wing are the same. The 

10 



geometry of an approximate wing-body combination is shown in figure 2. 
body surface is specified by the equation 

The equivalent- 

where Fe(x) is the nondimensional thickness distribution of the equivalent body. The 
leading and trailing edges of the wing planform are designated by the functions y2(x) 
and yl(x), respectively. The functions Fe(x), y2(x), and yl(x) which a r e  used in this 
report  are discussed in appendix A. 

Figure 2.- Geometry of configuration. 

It is assumed that the flow fields under consideration are isentropic. This assump- 
tion is not strictly valid when shock waves a r e  present in the flow field. 
be shown (ref. 19) that the largest  t e rm which is affected by the nonisentropic condition 
i s  of the order  (1 - Mn2)3 where Mn i s  the Mach number of the component of the 
upstream flow normal to the shock. 
approximation; therefore, the isentropic assumption is valid. 

However, it  can 

Te rms  of this order  are negligible in the present 
I 

Since the flow is assumed to be isentropic, the problem is formulated in t e rms  of 
the perturbation velocity potential cp. The governing equation for q~ i s  

( l - M _ 2 ) 2 + V 2 2 0 = M ,  2 

(3) 

11 
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where V22 is the Laplace operator in planes normal to  the x-axis and is written as 

The approximate boundary conditions for  the configuration are written as 

drb 9 ( x , r b , w j  = -sin a! sin w + cos a! - a r  dx 

and 

(0 5 w 5 2n) (5) 

In this report  the potential is made nondimensional with U,@ where U, is the 
free-s t ream speed, and all lengths are made nondimensional with B .  

DESCRIPTION OF METHOD 

At present, nonlinear solutions to transonic flow problems can be obtained only 
with numerical methods. 
lems is a costly task with current methods. 
reference 13, which is reviewed in appendix B, is used to reduce the three-dimensional 
problem of transonic flow about lifting configurations with aspect ratios of order  one to 
two simpler computational problems. 
potential is governed by & linear equation; and that once this par t  of the lift potential i s  
known, the dependence of the perturbation velocity potential 
angle w can be determined. Consequently, the perturbation velocity potential can be 
obtained as the solution of a two-variable problem in a plane of constant w .  

Numerical computation of three-dimensional mixed-f low prob- 
In this section the analytical treatment of 

It i s  shown that the dominant part  of the lift 

cp on the cross-flow 

Approximate Governing Equations 

From the equations in appendix B which govern the outer potentials a1, a2, 
and G3, and the f i r s t -  and second-order inner potentials, it  can be seen that to second 
order  in sin a! and 6, the equation which governs the perturbation velocity potential cp 

in  both the inner and outer regions at near-sonic speeds is 

12 



I 

where is the l inear lift potential. At near-sonic speeds i s  the same as cpl 
and, as a result, is governed by the equation 

The nonlinear t e rms  in equation (7) have been made proportional to Mm2 to be consis- 
tent with other transonic theories and to insure the proper behavior in the incompressible 
limit. 
in the outer region but are included to facilitate transition between the two regions. 

The terms on the right-hand side of equation (7) are of higher order  than necessary 

For Mach numbers appreciably different f rom 1, equation (7) is more than adequate 
for  describing the behavior of 
potential @a is governed by the equation 

cp. However, at  these Mach numbers the linear lift 

(1 - M 2 ) %  + V2 2 = 0 
(9) 

ra ther  than by equation (8). 

Solutions for Linear Lift Potential 

At near-sonic speeds the l inear  lift potential 
as a result ,  is obtained from slender-wing theory. 
( ref .  20) f o r  leading-edge separation is used at these speeds. 
for  

is governed by equation (8) and, 
The Brown and Michael model 

Slender-wing solutions 

c p a  for  attached and separated flow are given in appendix C. 

The linear lift potential i s  governed by equation (9) at subsonic and supersonic 
speeds. In this report  is obtained f rom the theory of Lawrence and Flax (ref.  21) 
for  subsonic flow and from a modified form of the theory of Carafoli et al. (ref. 22) for 
supersonic flow. 
aration which accounts for  Mach number effects is used for  subsonic and supersonic 
flows. These methods f o r  determining 
and supersonic speeds a r e  presented in appendix D. 

A modified f o r m  of the Brown and Michael model for leading-edge sep- 

fo r  attached and separated flows at  subsonic 

The theory of Lawrence and Flax f o r  subsonic flow and the modified theory of 
Carafoli e t  al. for  supersonic flow were chosen for  use in this report  because they both 
reduce to slender-wing theory in the limit a s  the free-s t ream Mach number 
approaches 1, and because they are simple theories which do not involve much numerical 
computation. 
consistently with Mach number i n  the range from incompressible to low supersonic flow 
and are easy to implement. However, it should be noted that more sophisticated subsonic 
and supersonic linear lift theories could have been employed for  both attached and sepa- 
rated flow. 

M, 

Consequently, the linear lift solutions which are used in this report  vary 

13 



Two - Variable Computation of Perturbation Velocity Potential 

cp is calculated with an approximate equation 
obtained by evaluation of the right-hand side of equation (7) and the derivative a2cp/aw2 
in that equation with the known solution of the l inear lift potential This approximate 
equation, which has the two independent variables x and r, is solved with the method of 
relaxation. Different approximations for  @a, are used in the outside flow field, where 
r > y2, and the inside flow field, where r < y2. 

The perturbation velocity potential 

@a,. 

Outside flow field.- At transonic speeds the outside flow field r > y2) includes the ( .~ . 

outer par t  of the inner region (where the governing equation is parabolic), the outer region 
(where the governing equation is of mixed elliptic-hyperbolic type), and the far field (where 
the governing equation is elliptic if the f ree-s t ream Mach number is subsonic and hyper- 
bolic if the f ree-s t ream Mach number i s  supersonic). 
tions (B26), (B27), and (B28) it i s  seen that the perturbation velocity potential cp and the 
linear lift potential f o r  configurations with one plane of symmetry can be expressed 
in the forms  

From equation (B20) o r  equa- 

(10) 2 
cp(X,r,w) = cpO(x,r) + sin a, ql(x,r)  sin w + sin cy cp2(x,r) cos 2w + . . . 

and 

@ a, = ql(x,r)  sin w + . . . (11) 

where cpo is of second order  in sin a and 6. It is tempting to separate equation (7) 
into i t s  Fourier components and solve the component equations simultaneously. 
this procedure cannot be used for  transonic flow fields because the basic nonlinear term 

However, 

- ~2 - ( y  + l ) M m 2 ~ 3 ~ ' ! ,  which depends on the angle w, would be represented by the 
c J 

t e rm - M 2  - ( y  + 1)M, yo' cpo", which is independent of w .  A s  a result ,  the 2 J  
Fourier  analysis would indicate that the locations of shock waves are independent of 
whereas it is clear  that, in general, the shock-wave locations depend on w. 

Another approach, which i s  the one employed in this paper, is to use equations (10) 
and (11) to approximate the derivative a2,/,w2 and the t e r m s  involving $a, in equa- 
tion (7) and to integrate the resulting equation in half planes of constant w. 
method the shock-wave locations can vary with w, and the computational problem is 
reduced to a two-variable calculation in the half planes. A separate integration must be 
performed f o r  each value of w f o r  which resul ts  are desired.  In the horizontal plane 
(w = 0), resu l t s  are calculated both above and beneath the wing. 

w ,  

With this 
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The functions ql(x,r) and q2(x,r) which are used to evaluate the derivative 

since the 
a2cp/8w2 are approximated analytically in this paper. Account is taken of the fact that 
the forms  of these functions are different for  large and small  values of r 
governing equation i s  parabolic near the configuration and either elliptic o r  hyperbolic in 
the far field. For the present it will be assumed that the lifting configuration is traveling 
in free air. 

Consider the function q1 for  Moo < 1. It can be shown from the resul ts  of appen- 
dix C that in the parabolic inner region where slender-wing theory applies, the form is 

Klunker (ref. 23) shows that the far-field solution for cp is 1 

where 

R = b2 + (1 - M 2 ) r 2  

Note that the x-coordinate is measured from the nose of the configuration, and that the 
configuration has a nondimensional length of 1. In this paper the function 'pl i s  approxi- 
mated in the outer part  of the flow field by the composite solution 

(x,r) = - 1 1 :  2 - f (x)  + ( 1 - - I$ f(1) J 
1 2 r  

fo r  Mm < 1, where 

f(x) = f ( 1 )  (x ' 1) 

Note that this equation is correct  in the asymptotic l imits of the parabolic inner region, 
where equation (12) applies, and the elliptic far field, 'where equation (13) applies. It is 
assumed to be correct  in the intervening mixed outer region. 
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Consider the function ql for  M, > 1. In appendix E it is shown that in the far 
field in the interval 

the function q1 can be approximated as 

where 

In this report  the function is evaluated with equation (17) in the outer par t  of the 
flow field in the interval given by inequalities (16). Outside of this interval the func- 
tion q1 is assumed to vanish. In order  to obtain equation (17), it  is necessary to 
assume that the variation of y2 with x is essentially linear. It should be noted that 
the right side of equation (17) approaches that of equation (12) as r becomes small .  

q1 

Consider the function q2. It can be seen f rom equation (B20) that this function 
can be written in the inner region as 

Note that the f i r s t  t e rm in equation (19) does not approach zero  as 
In order  to insure the proper asymptotic behavior for  large values of r ,  i t  is assumed 
that for  M, < 1, the function 'p2 is given by the equation 

r becomes large. 

in the outer par t  of the flow field. For MW > 1, q2 is evaluated with equation (19) i n  
the region 

I- < x / B  

0 5 x 5 1  

Outside of this region 'p2 is assumed to vanish. 
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It is shown in appendix C that the function f(x) for  attached transonic flow past 
configurations with straight trailing edges is 

f(x) = - y  2 2  (x) [ 1 + -- $:;] 
In calculating the derivatives f1 and f", it is assumed that rb' is negligible compared 
with y2'. 
the wing leading edge intersects the body, it is included so that the derivative f'(x) 
vanish at  the point where the wing leading edge intersects the body rather  than a t  the 
apparent wing apex inside the body. The derivative fl(x) for  values of x where the 
wing has both a leading edge y2(x) and a trailing edge yl(x) can be evaluated exactly 
with slender-wing theory. However, this evaluation is very tedious. In this report  an 
approximate form, which is a generalization of the approximate form developed for  wings 
by Mangler (ref. 24), is used. This approximate form is written as 

Although the quantity (rb/y2)4 is very small  except near the point where 
will 

df= 0 . 8 5 ~  dy2(  - 1 if)Jm dX 2 dx 4 Y2 + Y 1  

The function f(x) i s  determined by numerical integration of equation (23). 

For  subsonic Mach numbers appreciably different f rom 1, solutions to equation (9) 
for  attached flow a r e  obtained with the approximate method of Lawrence and 

A brief discussion of this  method, which is 
for 
Flax (ref. 21) fo r  wing-body configurations. 
an extension of that of Lawrence (ref. 25) for  wings alone, is given in appendix D. The 
method is applicable to configurations with unswept trailing edges and aspect ratios of 
order  one o r  less .  With this method solutions for  the function f(x) a r e  obtained which 
to lowest order  satisfy the trailing-edge Kutta condition. The t e rms  in equations (12), 
(13), (15), (17), (19), and (20) which depend on the function f(x) 
evaluated with this solution. It should be noted that the slender-wing solution for  f(x) 
does not, in general, satisfy the Kutta condition at the trailing edge. 

and i ts  derivatives are 

It is shown in appendix D that the function f(x) is related to the values of on 
the upper and lower surfaces  of the wing, which are designated as $ and Ga,$ a,u 
respectively, by the equation 
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where the transformed coordinate 7 is related to the physical coordinates y and z 
by the equation 

Since the function f(x) 
additional assumption concerning the spanwise variation of 
to evaluate the pressure  distribution. 
ation of 

is determined directly with the method of Lawrence and Flax, an 
must be made in order  

In this report  i t  is assumed that the spanwise var i -  

@a on the surface is the same as that predicted by slender-wing theory. 

For  supersonic attached flow an approximate solution to equation (9) is obtained 
with a method which is based on the quasiconical method of Carafoli et al. (ref. 22) for  
supersonic flow past wings with subsonic leading edges. The supersonic applications of 
the present method and the method of reference 22 are restr ic ted to wings with unswept 
trailing edges. 
surfaces of the wing, respectively, can be approximated as 

It is assumed that the forms  of the potential on the upper and lower 

where 77 is given by equation (25). 
functions of x and y (or z) which correspond to the quantities A*, Ql, and Q 2  in 
reference 22. 
given in appendix D. 

The quantities A, bl,  and b2 a r e  slowly varying 

The method which i s  used to evaluate the functions A ,  bl ,  and b2 i s  

The function f(x) for  attached flow i s  obtained f r o m  equation (24) by numerical 
integration. Values for  the integrand are obtained from equation (26). The derivatives 
of f(x) used in equations (19) and (20) a r e  determined numerically with upwind difference 
formulas. 

If the flow is separated at the leading edge of the wing so that there is a vortex 
above the wing near the leading edge, or if the flow is attached at the leading edge but 
there is a vortex over the wing which w a s  generated by a strake ahead of the wing, there 

is an additional contribution to the function f(x) of the form 

An expr 
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ion for the product ‘yv(x)Xv(x) can be obtained from equation (C26). 



Consider the case of flow past a model in a tunnel. If the tunnel walls are solid, 
the boundary condition at the wall r = rma,) is ( 

Baldwin, Turner, and Knechtel (ref. 26) show that if the tunnel has slotted walls, the 
boundary condition is 

(r = ~ r n a x )  

where K is related to the slot width aw and the slot spacing bw by the equation 

K = -- bW log, (sin 2) 
7l 

Chen and Mears (ref. 27) also obtain equation (29) as the boundary condition for  slotted- 
wall tunnels where K is related to the slot-width parameter gW, slot  spacing bw, 
and slot-thickness parameter E, by the equation 

b, 
2 

"""(?;I;) TZW + c o s h ( 2 )  

s i n ( 2 )  

It should be noted that no assumptions concerning Mach number were made in the deriva- 
tion of equation (29). 
with x. Consequently, equation (29) can be integrated with respect to x to yield 

In this report  it is assumed that the slot geometry does not vary 

This form is used in this report .  
is 

For  tunnels with porous w a l l s  the boundary condition 

(r = rniax) (33) 
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It is assumed that the tunnel wall lies in  the region where the Fourier expansion 
(eq. (10)) applies. Since the boundary conditions are linear, each component on the right 
side of equation (10) must satisfy them. Assume that the functions ql(x,r) and q2(x,r) 
are of the form 

where the coefficients B,(x) and Cw(x) are to be determined from the boundary con- 
ditions. The f o r m s  of the last t e r m s  in equations (34) and (35) are chosen so that the 
t e r m s  in equation (10) proportional to &(x) and Cw(x) are solutions to the two- 
dimensional Laplace equation. 

When equations (34) and (35) are substituted into the slotted-wall boundary condi- 
tion (eq. (32)), i t  can be seen that the quantities Bw(x) and Cw(x) are given by the 
equations 

and 

20 

Note that the solid-wall boundary condition (eq. (28)) is simply the special case of the 
slotted-wall condition (eq. (32)) with 1 / ~  = 0. 

When equations (34) and (35) are substituted into the porous-wall boundary condition 
(eq. (33)), it is found that BJx) and Cw(x) are governed by the ordinary differential 
equations 

(38) 1 B, = - -k? 1 - - 1 f) 
2 Prmax 

B,' +- 
Prmax rmax 



and 
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The solutions to equations (38) and (39) are 

and 

To summarize,  the equation which is solved in the outside flow field is 

3 A 3 a2  2 + - - :r( r LE :r) = - :2[ sin a! ql(x,r)  sin w + 4 sin 2 a! q2(x,r)  cos 2w 
ax 

2 f(x) f'(x) 
4 r 

+ 2Mm2 sin a! 

where 

A = 1 - Mm2 - ( y  + l )Mm 2 Q  
ax 

(43) 

and where 'pl and 502 are given by equations (15) and (20) for  M, 5 1 and equa- 
tions (17) and (19) for  M, > l. I€ a tunnel wall is present, equation (28), (32), o r  (33) 
is used for  the boundary condition, and the quantity 



AF = sin cy B,(x) sin w + 4 sin2cv c,(x> cos 2w (44) 

is added to the right side of equation (42). The functions %(x) and Cw(x) are 
obtained f rom equations (36 )  and (37) f o r  solid o r  slotted walls and equations (40) and (41) 
for porous walls. 

Flow field near configuration.- Consider the flow in the close vicinity of the config- _ - -  
uration. Assume that in this region the perturbation velocity potential q can be 
approximated as 

q(x,r,w) = sin a! @Q(x,r,w) + ao(x,r,w) (45) 

where the potential @a! is the l inear lift potential and the potential +o is of second 
order  in the parameters  6 and sin CY. Solutions for  @a! are given in appendixes C 
and D. It can be shown from equations (5) and (6) that the boundary conditions for  @a 
and a0 a r e  

"a! 
-(x,rb,w) = 0 a r  

and 

From equations (7), (a), (9), and (45), it follows that a. is governed by the 

a2a0 a2@@ 
A -  + v ~ ~ + ~  = -A sin a! - 

a 2  ax2 
+--- 

ax a r  .2 aw ax a w l  
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where 

h = A  (49) 

if +a is governed by equation (8) and 

h =  A -  (1 - M m 2 )  

if is governed by equation (9). 
flow, equation (48) can be approximated as 

It should be noted in passing that for  near-sonic 

a2GCY 1 a+CY a - + - -- - 
ax a r  .2 aw ax a w  

2 v2 +o = ( y  + 1) sin 

It is assumed that in the region (r < y2(x)) the potential @CY in the governing 
equation (48) fo r  can be approximated by the three-term expansion about the axis 
(r = 0) of the slender-wing potential for  attached flow past a wing with no trailing edge. 
This approximation for  $CY is written as 

+o 

where the plus and minus signs apply above and beneat.. the wing, respectively. For wings 
with swept trailing edges, i t  is assumed that equation (52) applies ahead of the point where 
the trailing edge emerges from the body, and that the right side of equation (48) vanishes 
aft of this point. 

The particular solution to equation (51), and hence, for  practical purposes, equa- 
tion (48), with QCY approximated by equation (52) is 

. 
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Since the complementary solution fo r  9 
and hence dominates the particular solution near the axis, it is concluded that there is a 
substantial region around the axis where the dominant par t  of +o is independent of w.  

is a source te rm (a t e rm proportional to loge r) 0 

In this report  it is assumed that Oo(x,r,w) can be approximated by a function 
which is independent of w. This function is defined as 

for  points above the wing (w > 0) and as 

for  points below the wing (w < 0). 
values f o r  qo(x,r) are calculated both above and below the wing. The governing equa- 
tion for qO(x,r) is 

If the computational plane is the wing plane (w = 0), 

2 A -  - 2Mm sin a! (55) 

The right side of this equation was obtained by integrating the right side of equation (48) 
with 
The equation for  the function A used in equation (55) is 

qa! approximated by equation (52) over the regions above and beneath the wing. 

A = 1 - M~~ - ( y  + I)M, 
ax 

The quantity u,(x) is the average velocity due to lift in the regions above and beneath 
the wing near the axis and is given by the equations 

for  attached flow, 

UJX) = f y21 + r 2(Yvhv)’- 1 7 rv 
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for  flow which separates  a t  the leading edge with a vortex, and 

for  flow which is attached a t  the leading edge but which has  a strake-generated vortex 
inboard of the wing tip. 
respectively. 
is used at the axis is obtained f rom the f i r s t  of equations (47) as 

The plus and minus signs apply above and beneath the wing, 
Equations (57) are derived in appendix C. The boundary condition which 

drb(x) 
= rb(x) dx 

r -0 

For  f ree-s t ream Mach numbers below 1, the trailing-edge Kutta condition must 
be satisfied at least  approximately in order  fo r  the solutions to be physically realistic. 
For a configuration with an unswept trailing edge located at x = xt, this condition can be 
expressed as 

where Ax is the mesh spacing for  the x-coordinate and z = rt0 designates the upper 
and lower surfaces of the wing and trailing vortex sheet. For  shockless flow which is 
attached at  the leading edge, this condition is enforced automatically if 
f rom the theory of Lawrence and Flax. If @a is obtained from slender-wing theory, 
the condition is met for  shockless attached leading-edge flow by requiring that the deriv- 
ative y2' 
that if there is a vortex over the wing, the contribution of the vortex system to the deriv- 
ative A$@' 

@a is obtained 

approach zero at the trailing edge of the wing. It is shown in appendix C 

on the inboard portion of the wing is of the form 

if the flow i s  separated at the wing leading edge and 
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if the vortex is s t rake generated. Of course,  equations (60) are not valid on the outboard 
portion of the wing near the vortex. If the computational plane is the wing plane where 
w = 0, partial account of the effect of shock waves and leading-edge separation on the 
Kutta condition is taken by imposing the condition 

The subscripts u and Q designate values on the upper and lower surfaces of the wing 
and vortex sheet. 
computational planes other than the wing plane. 

This additional adjustment for  the Kutta condition is not made for  

Method of solution.- The method of successive line overrelaxation is used to solve 
equations (42) and (55).  
(ref. 28). 
incorporated in the method since it tends to predict the jump condition at  strong shock 
waves more  accurately than other difference operators.  The details of the numerical 
procedure are given in appendix F. 
strength and location is given in appendix G. 

The procedure used here is very s imilar  to that used by Bailey 
However, the shock difference operator developed by Murman (ref. 29) is 

The solution procedure used to find the vortex core 

Determination of Surface Pressures ,  Lift, 

and Pitching Moment 

Although the velocity potential is calculated in wind-oriented coordinates in this 
report ,  the surface pressure  coefficients a r e  calculated in body-oriented coordinates. 
The velocity potential is used in the form 

where the coordinates x, r, and e in this equation are body oriented. The angle e 
is zero in the wing plane and positive above the wing. One of the forms  discussed in 
appendixes C and D is used for  the cross-flow potential 
numerically in t e rms  of wind-oriented coordinates is used for  the potential 
last te rm in equation (62) is a correction factor which accounts f o r  the fact that the wing 
boundary condition fo r  the lift potential 
when wind-oriented coordinates are used and in the wing plane (6  = 0) when body-oriented 

$ a ,  and the solution determined 
yo. The 

is enforced. in the horizontal plane (w  = 0) 
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coordinates are used. 
axial, radial, and cross-flow directions be u, v, and w, respectively. The pressure 
coefficient is written to second order  in 

Let the body-oriented perturbation velocity components in the 

6 sin a! as 

2 + sin a,(v sin e + w cos e )  - v2 - w 3 
It was. shown by Munk (ref. 30) that the lift acting on that par t  of a slender configu- 

ration between the nose and the points x upstream of the trailing edge is 

L(x) = -cos a,[$c cp(x,y,z) dy + ?rr:(x) sin a, I 
where L is made nondimensional with the factor p,Um2Q2 where p m is the free- 
s t ream density. The path of integration C for the integral in equation (64) is the con- 
tour around the configuration in the cross-flow plane which intersects  the axis  at x,  and 
the velocity potential cp is given by equation (62). Equation (64) can be expressed as 

where 

Lo(x) = 2 cos CY ry=y2(x)  ACDO(X'Y) dY 
"y=o 

and 

Ll(x) = -cos CY sin QCY(x,y,z) dy + nr;(x;) 

The quantity Aq0(x,y) i s  the difference in the potential qo on the upper and lower 
surfaces of the configuration at  the point x,y. The lift t e rm Lo(x) in equation (65) 
is evaluated numerically in this report .  

It can be seen from the resul ts  of Wei, Levinsky, and Su (ref.  31) that for  slender- 
wing flow past a configuration with a vortex over the wing and an unswept trailing edge, 
the lift t e rm L1(x) can be written as 



The functions yv and are associated with the vortex and are discussed in appen- 
dix C. As is pointed out in the appendix, these functions have different forms  for  leading- 
edge separation and fo r  a vortex inboard of the leading edge. If there  is no vortex over 
the wing, the last t e rm on the right side of equation (67) vanishes. 
equation (67) applies f rom the nose of the configuration to the trailing edge of the wing. 

It should be noted that 

It has been shown by Mirels (ref. 32) that if the trailing edge as well as the leading 
edge of the wing is swept a t  x, the derivative dL fo r  a configuration with a con- 
stant body radius can be written as 

dL1 dq 2 
2 d x  

-(x) = 277 cos a! sin a! 17 
dx 

where q 2  is given by equations (C11) and K(k) and E(k) are complete elliptic inte- 
gra l s  of the f i r s t  and second kinds, respectively, with the modulus k given by equa- 
tion (C12). The function S(x) is discussed in appendix C. It  can be seen that with the 
approximations given by equations (C15) and (C16), equation (68) can be approximated as 

-(x) = 277 cos a! sin a! dL1 
dx 

where the derivative df/dx i s  given by equation (23). The last te rm in equation (69) is 
added so that this equation will be consistent with equation (67). 
points where there  is a swept trailing edge must be determined by numerical integration 
of equation (69). 

The lift t e rm Ll(x) at 

Neither equation (67) nor (69) is valid at  points aft of the trailing edge of the wing 
unless the body radius is constant behind the wing. Adams and Sears  (ref. 33) derived an 
integral expression fo r  the load on the aft end of a configuration with an unswept trailing 
edge and a body which closes. It is observed in reference 33 that because the flow in the 
aft cross-flow planes is essentially incompressible, the area of a s t ream tube with the 
outer and inner radii  rt and rb(xt) a t  the trailing edge is constant over the afterbody 
of the configuration. Consequently, the outer boundary of this s t ream tube is 

Aft of the trailing edge equation (66) for  the lift t e rm L1(x) can be written as 
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L1(x) = -cos CY s in a,Bc @,(x,y,z) dy + ar:(xq 

- w=2 a 
b(xt) J,=, @a(Xtyrb(Xt) 'w) sin dw 

where A@a, is the difference in the l inear lift potential @a above and beneath the 
wing. The derivative dy dyt can be evaluated with equatione(70). / 

The pitching moment about the nose is calculated with the equation 

dL  x= 1 
M =  x - dx 

P dx 

TRANSONIC AREA RULE FOR LIFTING CONFIGURATIONS 

It is well known that the effect of thickness is to deflect streamlines outward from 
It can be shown that for  near-sonic flow, lift can also have this effect the configuration. 

in addition to the usual downwash effect. 
deflection of streamlines i s  depicted schematically in figure 3.  
a rea  of s t ream tubes is minimum where the flow is sonic. 
the fluid speed in s t ream tubes above the wing and to decrease the speed in the tubes 

The manner in which lift causes the outward 
The cross-sectional 

The effect of lift is to increase 

Velocity inc reases  above wing; 
s t r e a m  tube s i ze  increases  

S t ream tube s i ze  - 
near  minimum in 
transonic f r e e  

Y x  
s t r eam 

4 

b 
/ Velocity dec reases  below wing; - = '  s t r e a m  tube s i ze  inc reases  

Figure 3.- Outward displacement of streamlines by both lift and thickness effects. 

29 



beneath the wing. 
increase and decrease in fluid speed are deviations f rom near-sonic flow. Thus the 
c ross  sections of practically all the s t ream tubes about the body increase so that the 
streamlines are deflected outward more than they would be by thickness effects alone. 
I t  should be noted that this phenomenon does not occur fo r  completely subsonic o r  com- 
pletely supersonic flow, where an increase in s t ream tube s ize  on one side of the wing is 
compensated by a decrease on the other. 

For configurations traveling a t  Mach numbers near 1, both the 

An expression for  the effective cross-sectional area of a lifting configuration 
traveling a t  transonic speed is given by equation (B32). The lift coefficient is defined in 
t e rms  of the present notation as 

where Sref is the reference area.  With equation (D23) and the fact  that to lowest order  
the l inear lift L1 and the total lift L a r e  the same, equation (B32) can be written to 
lowest order  as 

2 
S (x) = nrb 2 (x) + - y + 1 TB(Sref -- ‘‘I-,) + 1 Sref CL(x) sin a! 

ef f 2 4n dx (74) 

An expression f o r  the coefficient B is given by equation (B33). 
equation is a t  best  only a weak function of x and can, f o r  practical purposes, be con- 
sidered constant. However, a unique value for  B cannot be determined with this equa- 
tion because the length scale P cannot be determined with the theory of appendix B. A 
value for  B can be obtained numerically with the present method by comparing the flow 
fields of lifting configurations and axisymmetric bodies with cross-sectional a r ea  distri- 
butions obtained from equation (74). 

The right side of this 

It should be noted that the last  t e rm in equation (74) can be ignored f o r  practical 
purposes because both CL and sin a! tend to be much smaller  than the gradient of CL 
in the region where the effects of lift a r e  large. It should also be noted that the resul ts  
of references 13  and 14 indicate that there are higher order  t e r m s  in the expression fo r  
the effective cross-sectional a r ea  which are proportional to the derivatives of the wing 
twist and camber. These t e rms  a r e  negligible unless the wing twist and camber are of 
the same order  of magnitude as 
report, the additional t e rms  do not appear. 

sin a.  Since the wing is assumed to be flat  in this 
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RESULTS 

In this section resul ts  are presented f o r  axisymmetric flow fields and flow fields 
about lifting configurations. In addition, the results of a numerical study of the transonic 
area rule for  lifting configurations are presented. 

Axisymmetric Flow Fields 

Parabolic arc of revolution. - The present method calculates axisymmetric flow 
fields in essentially the same manner as the method of Bailey (ref. 28). 
difference is that the present method employs the shock difference operator of Murman 
(ref. 29) and the method of reference 28 does not. 
method and that of Bailey are compared fo r  flow past a parabolic a r c  of revolution with a 
fineness ra t io  of 10. The free-s t ream Mach number is 0.99. Results for  the sonic-line 
and shock-wave locations and the surface pressure distributions a r e  given. 
that the use of the shock difference operator influences the resul ts  for  the location of the 
shock wave and the pressure  in the region behind the shock. 

The only major 

In figure 4 resul ts  of the present 

It is seen 

Shock-wave and sonic-line locations 

-.4 

-.2 

cP 0 

.2 

.4 

Body p res su re  distribution 

P resen t  method 
Bailey ---- 

Figure 4. - Comparison of methods for  parabolic a r c  of revolution with fineness ratio 
of 10. Moo = 0.99; CI = 0'. 
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Parabolic a r c  of revolution with bump.- Equation (74) indicates that the flow fields 
about wing-body combinations traveling at near-sonic speeds at angle of attack are simi- 
lar to flow fields about bodies with bumps on them. Therefore, the present method should 
be capable of calculating flow about bodies with i r regular  thickness distributions. In fig- 
ure 5 the results of the present method are compared with the experimental resul ts  of 
Taylor (ref. 34) for  a body with a bump on it. The basic body is a parabolic a r c  of revo- 
lution with a fineness ratio of 14 and the amount the bump, which extends from x = 0.393 
to x = 0.607, adds to the configuration radius is given by the equation 

sin2 (" - 0.393 )J A r  = Armax 0.214 

where Armax is 20 percent of the basic body diameter. It should be noted that ro, 
the radius of the surface on which the boundary condition given by equation (58) is applied, 
w a s  given the value of 0.03. This value is approximately the body radius where the bump 
begins and ends. The resul ts  for  the pressure distribution differ slightly for  other values 
of ro. 

. 4 L  -- 
Figure 5.- Pressure  distribution for bumpy body. M, = 0.975; Q! = 0'. 
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Ellipse of revolution.- The resu l t s  of the present method for  an elliptic body with a 
fineness ratio of 10 are compared with the resul ts  of the method of South and Janieson 
(ref. 35) in figures 6 and 7 fo r  Mach numbers 0.99 and 0.997, respectively. 
method the small-disturbance approximation is used, whereas in the method of re fer -  
ence 35 the full potential equation is solved. 
general, the resul ts  of the two methods for  the pressure  distributions are in reasonable 
agreement. The resul ts  of the two methods differ in the region of the nose for  M, = 0.99. 
This difference is probably due to the fact  that the small-disturbance approximation, which 
tends to be inaccurate in stagnation regions, w a s  used in the present method. It should be 
noted that the method of reference 35 does not employ the Murman shock difference oper- 
ator.  Consequently, the resul ts  of the present method in the region of the shock a r e  
mathematically more realist ic than those of the method of reference 35. 
f rom the figures that the present method predicts a smaller  supersonic region a t  large 
radial distances f rom the configuration than the method of reference 35. 

In the present 

It can be seen from figures 6 and 7 that, in 

It can be seen 

Parabolic a r c  of revolution in slotted and porous tunnels.- The resul ts  of the pres-  
- -- . - - . - . - - - - 

ent method f o r  transonic flow past  a parabolic-arc body with a fineness ratio of 10 in a 
slotted-wall tunnel are shown in figure 8. 
body has a sting which extends downstream from x = 0.84. 
the resul ts  of the present method for  flight in f r e e  air and the experimental resul ts  of 
Taylor and McDevitt (ref. 36). 

The free-s t ream Mach number is 0.99. The 
Comparisons are made with 

The experimental resul ts  were obtained in the Ames 

Shock-wave and sonic-line locations 
- .4 

\ 
/' 

-.2 

cP 0 

.2 

.4 

- Presen t  method 
----- South and Jameson 

Body p res su re  distribution 

Figure 6.- Comparison of methods for  ellipse of revolution with fineness ratio 
of 10. M, = 0.99; CY = 0'. 
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Figure 7. - Comparison of methods for  ellipse of revolution with fineness ratio 
of 

Shock wave and sonic line 

10. Moo= 0.997; CY = 0'. 
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Figure 8.- Parabolic a r c  of 

- Free air 
0 0  Experiment,  Ames  14-foot tunnel 
-- Slotted wall, Ames  14-foot tunnel (K = 0.103) 
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revolution in slotted-wall tunnel. Moo = 0.99; a! = 0 0 . 
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14-foot wind tunnel. 
tially square,  and has an openness ra t io  of 0.054 and a slot  spacing of 24.77 cm (9.75 in.). 
The wa l l s  are actually neither slotted nor porous in the usual sense because the slots are 
subdivided with a corrugated strip.  
arc body is 203.2 c m  (80 in.). The 
dashed line depicts the resul ts  when the constant K in the slotted-wall boundary condition 
(eq. (29)) is evaluated with equation (30), which was developed by Baldwin, Turner,  and 
Knechtel (ref. 26), and the characterist ics of the Ames 14-foot tunnel. It is seen that the 
computation is in reasonable agreement with the experimental resul ts  except at the rear 
where the flow is probably separated. A comparison with the f ree-a i r  resul ts  shows that 
the effect of the wall is to truncate the supersonic region and move the shock wave forward. 
It is known that the shock can be moved rearward by reducing the tunnel openness, and 
hence by increasing the value of K .  It is seen that fo r  the choice K = 1 the tunnel 
resul ts  and the f ree-a i r  resul ts  are essentially coincident. 
and the pressure  level ahead of the shock a r e  both in agreement. 

This tunnel has the same type of slots on all four walls,  is essen- 

The theoretical length of the symmetric parabolic- 
Results fo r  two slotted-wall computations are shown. 

Note that the shock location 

Results for  flow in f ree  air and a porous-wall wind tunnel a r e  compared in figure 9. 
It is seen that the shock wave is located upstream of the free-air  shock if the constant P 
in the porous-wall boundary condition (33) has a value of 0.5. 
which was recommended fo r  the Ames 14-foot tunnel by Bailey (ref. 28). When P is 

This is the value of P 

Shock wave and sonic line Surface p re s su re  distribution 

Porous wall 

< 

cP 

F ree  air 
- - - - -  Porous wall, p = 0.5 
x x x x x Porous wall, p = 0.1 

- 

I 
.4 

I 
.2 

- I 
0 

I -  
6 .8 1.0 

.4 

Figure 9.- Parabolic a r c  of revolution in porous-wall tunnel. Ma = 0.99; ct = 0'. 
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given the value 0.1, it is seen that the shock wave is located downstream of the free-air 
shock. However, the same minimum pressure  level upstream of the shock, which differs 
f rom the free-air level, is obtained fo r  both values of P. It appears  f rom these calcu- 
lations that slotted-wall tunnels are more capable of reproducing free-air resul ts  than 
porous -wall tunnels. 

\ 

Flow Fields About Lifting Configurations 

Comparisons with l inear subsonic and supersonic methods. - The resul ts  of the 
~~- 

present method fo r  incompressible attached flow past  two wing-body combinations a r e  
compared with those of a standard l inear panel method (ref. 37) in figure 10. 
lift potential used in the present method is obtained f rom the theory of Lawrence and 
Flax (ref. 21). The body is an ogive-cylinder-ogive with each ogive being one quarter  of 
the body length. A configuration which has a flat-plate delta wing with a 45' leading- 
edge sweep and a configuration which has a truncated flat-plate delta wing with the same 
sweep are treated. 
that is, the pressure  distribution along the intersection of the body surface and the wing 
plane, are compared. The resul ts  of the two methods are in fair agreement. It can be 
seen that the panel-method resul ts  for  the afterbody pressure  depicted in figure lO(a) 
contain large oscillations and are probably in e r r o r .  

The linear 

The resul ts  for  the body pressure  distribution in the wing plane, 

- Present  method 
--- - - Woodward-Carmichael 

Planform view of configuration 

-.5 

cP 0 

.5  

Body p r e s s u r e  distribution in wing plane 

I 

(a) Delta wing. 

Figure 10. - Comparison of resul ts  for  body pressure  distribution in wing plane. 
0 M,=O; a = 4 .  
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- Present  method 
- - - - Woodward-Carmichael 

-.5 

cP O .  

Planform view of configuration Body p r e s s u r e  distribution in wing plane 

I 
0 .5 1.0 

.5 L L  
x/Q 

(b) Cropped delta wing. 

Figure 10.- Concluded. 

In figure 11 the resul ts  of the two methods a r e  compared for  supersonic attached 
flow past two configurations. 
method is obtained from a quasiconical theory. 
as predicted by the present method a r e  shown on the left, and the surface pressure dis- 
tributions in the wing plane are compared on the right. 
wave locations are determined from the longitudinal Mach number distributions. 
assumed that weak shock waves a r e  located at  points in regions of supersonic flow where 
the derivative qYY has a negative minimum. The free-s t ream Mach numbers for  the 
delta-wing and the truncated delta-wing configurations are 1.1 and 1.4, respectively. 
the lower f ree-s t ream Mach number there i s  a slightly detached bow shock, a tail shock 
which intersects the body just upstream of the rear apex, a w e a k  shock in the vicinity of 
the wing, and small  pockets of subsonic flow a t  the ends of the body. The resul ts  of the 
two methods for  the surface pressure  distribution are in good agreement in the vicinity 
of the wing. 
hence where linear methods tend to be inaccurate. 
the results for  the afterbody pressure  distribution. 
the shock-wave pattern is qualitatively the same as that with M, = 1.1, but there are no 
pockets of subsonic flow. 

The linear lift potential which is used in the present 
The shock-wave and sonic-line locations 

Sonic-line and strong-shock- 
It is 

For 

There is some disagreement on the forebody where the flow is transonic and 
There is also some disagreement in 

For the flow field with M, = 1.4, 

The resu l t s  of the two methods f o r  the pressure distributions 
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(a) Delta wing. M, = 1.1: a! = 2 0 . 

- Present  method 
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(b) Cropped delta wing. M, = 1.4; a! = 4'. 

Figure 11.- Comparison of resul ts  for shock-wave and sonic-line locations and 
body pressure distribution in wing plane. 
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in the vicinity of the wing disagree somewhat, but the pressure difference across  the 
wing is the same. 
The pressure  increase on the rear par t  of the wing indicated in figure l l(b) is due to the 

The resul ts  fo r  the afterbody pressure  distributions are in agreement. 

0 

1 39 

f i r s t  t e rm on the right side of equation (55).  This is the nonlinear 9 t e rm as 
ax ax2 

approximated in the present method a t  points inside the wing tip. As has been pointed out 
previously, this t e rm is evaluated on the basis  of slender-wing theory and, as a result, 
the Mach lines are assumed to be perpendicular to the free-s t ream direction. Of course, 
this approximation is poor for  a Mach number of 1.4. 

Results obtained with the present method and the method of reference 37 for  the 
chordwise pressure  distributions at two span stations on the delta-wing configuration 
traveling at both subsonic and supersonic speeds are compared in figure 12. 
that the resul ts  of the two methods are in reasonable agreement. 

It is seen 

Transonic lift effects for  subsonic f ree-s t ream speeds.- The effect of lift on the 
shock-wave and sonic-line locations in the wing plane of a wing-body combination traveling 
a t  a Mach number of 0.99 is shown in figure 13. The linear lift solution is obtained from 
slender-wing theory. The configuration i s  composed of a body with a fineness ratio of 12  
and the maximum-thickness point at  x = 0.4 and a "hyperbolic" wing. (See appendix A.)  
It is seen that for  angles of attack of 6' and less, the effects of thickness a r e  dominant, 
and fo r  angles of attack of 9' and l a rge r ,  the effects of lift a r e  dominant. For  the lift- 
dominated cases,  the flow decelerates with a shock immediately ahead of the apparent 
bump due to lift, then overexpands past the bump, and finally decelerates with a shock 
near the trailing edge. 

- - .. 

In figure 14  the effect of lift on the sonic-line and shock-wave locations for flow 
past another wing-body combination traveling at the lower f ree-s t ream Mach number 
of 0.98 is shown. 
ratio of 10 and a flat-plate truncated delta wing with a rounded tip. A s  before, the linear 
solution is obtained from slender-wing theory. It is seen that the lift effect for  this case 
is qualitatively the same as before, but that the angle-of-attack range for  thickness- 
dominated flow is smaller .  Lift-dominated flow exists for  angles of attack of 6' and 
larger .  

The configuration is composed of a circular-arc  body with a fineness 

The pressure  distributions along the intersection of the body surface and the wing 
plane of the configuration shown i n  f igure 14 for  a = 0' and a = 9' a r e  compared in 
figure 15. For the larger  angle of attack, the distributions both above and beneath the 
wing a r e  shown. 
surface of the wing fo r  
a = 0'. 

It is seen that the strength of the shock wave due to lift on the upper 
a, = 9' is much larger  than the thickness-induced shock fo r  

It is also seen that there is a small  supersonic region and shock wave beneath 
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Figure 12.- Comparison of results for  chordwise pressure distributions at 
two span stations on a delta-wing configuration. 
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a = 8' CY = go ff = 120 

Figure 13.- Effect of l if t  on transonic shock-wave and sonic-line locations in wing 
plane. M, = 0.99. 
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Figure 14.- Effect of lift on transonic shock-wave and sonic-line locations in wing 
plane. M, = 0.98. 
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the wing. 
horizontal plane (w = 0'). 

It should be noted that the resul ts  shown in this f igure were calculated in the 

A s  discussed in a previous section, the linear lift solution can be obtained from the 
theory of Lawrence and Flax if Mm is l e s s  than 1, slender-wing theory if M, i s  

near 1, and the modified theory of Carafoli e t  al. i f  Moo 
sonic values of M,, either slender-wing theory or  the theory of Lawrence and Flax can 
be used since the la t ter  reduces to the former as Mm 
strate  that both theories a r e  applicable in this range, resul ts  obtained with them are com- 
pared in figure 16 for  a free-s t ream Mach number of 0.98 and an angle of attack of 6'. It 
is seen that the resul ts  of the two theories a r e  in good agreement except near the point 
where the wing emerges from the body. 
this region a r e  due to the fact that some of the derivatives associated with the geometry 
a r e  calculated analytically for  slender-wing theory and numerically for  the theory of 
Lawrence and Flax. 

is greater  than 1. For  high sub- 

approaches 1. In order to demon- 

The differences in the pressure  distributions in 

Closer agreement can be obtained with a refined grid. 

In figure 17 the shock-wave and sonic-line locations for  a! = 9' calculated in the 
plane of symmetry (w  = 90°, -90') a r e  compared with those calculated in the horizontal 
plane (w = 0'). 
metry (w = 90') is about the same as that in the horizontal plane. 

The extent of the supersonic region in the upper part  of the plane of sym- 
However, it i s  seen 
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Figure 16. - Comparison of wing-plane resu l t s  obtained with slender -wing theory 
and Lawrence-Flax theory. M, = 0.98; Q! = 6 . 0 

Wing plane Vertical  plane 

A 
I \  

I I 
I I 

I 
I 
I / I 

i 
I 

Figure 17. - Comparison of shock-wave and sonic-line locations in wing plane 
and vertical plane. Mw = 0.98; (Y = 9 . 0 
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that the computation for  indicates that there  is no supersonic bubble in the 
lower par t  of the symmetry plane so that the flow is entirely subsonic. 
supersonic flow is caused by the decelerating effect of the lift-dipole te rm on the flow 
beneath the wing. There is a difference in the resul ts  calculated for  
w = -90' since the former  indicates the existence of the small  region of supersonic flow 
beneath the wing. This difference is probably due to the simple flow model in the region 
r < y2(x) and indicates a limitation of the present method. 

horizontal-plane resul ts  f o r  the shock-wave and sonic-line locations for  slightly super- 
sonic flow past  a wing-body combination at angles of attack a! = 0' and a! = 10' are 
compared. The free-s t ream Mach number Moo is 1.02. It is seen that two of the effects 
of increasing the angle of attack are to move the rear shock forward onto the trailing edge 
of the wing and to increase the size of the subsonic region behind the rear shock. 

w = -90' 
This lack of 

w = 0' and 

Transonic lift effects for  supersonic - f ree-s t ream speeds.- In figure 18 the 

The pressure  distributions along the intersection of the body surface and wing plane 
are compared in figure 19. 
the size of the r e a r  subsonic region, lift is seen to increase the strength of the shock 
above the wing. 

In addition to moving the r e a r  shock forward and increasing 

The resul ts  shown in figures 18 and 19 were obtained with a lift solution obtained 
from slender-wing theory. It is shown in figure 20 that virtually the same resul ts  can 
be obtained for  M, = 1.02 when the lift solution is obtained from the quasiconical theory 
of Carafoli e t  al. (ref. 22). This is to be expected since conical theory for  supersonic 
flow reduces to slender-wing theory as the free-s t ream Mach number approaches 1. 

Lifting transonic tunnel flows.- The resul ts  fo r  transonic flow past a lifting config- 
uration in f r e e  air and in a slotted tunnel a r e  compared in figure 21. 
and angle of attack a r e  M, = 0.98 and a = 12O, respectively. The slotted-tunnel com- 
putation is fo r  a configuration with a span of 152.4 cm (60 in.) in an axisymmetric model 
of the Ames 14-foot transonic wind tunnel. 
supersonic region is truncated by the tunnel wal l  and that the presence of the wal l  causes 
the shock to be shifted forward. 

The Mach number 

The resul ts  show that the outer par t  of the 

The effects of a solid wall on the shock-wave and sonic-line locations in the wing 
plane f o r  slightly supersonic flow past  a lifting wing-body combination are shown in fig- 
ure  22. The Mach number and angle of attack a r e  M, = 1.02 and a! = loo, respectively. 
The resul ts  for  free air are shown on the left, and those for  flow in the tunnel are shown 
a t  the right. 
reflected shock intersects the aft shock in such a manner that the subsonic pocket at the 
rear of the configuration is enlarged considerably. The location of the reflected shock 
in the region of the intersection is not shown because of the difficulty in locating weak 
oblique shock waves. 

It is seen that the bow shock is reflected at the tunnel wall and that the 
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Figure 18.- Comparison of shock-wave and sonic-line locations in wing plane 
fo r  two angles of attack. Mm = 1.02. 
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Comparison of body pressure  distributions in wing plane for  
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Present  method with quasiconical theory 

Body p res su re  distribution Shock-wave and sonic-line locations 

Leeward 

Figure 20. - Comparison of wing-plane results obtained with slender-wing theory 
and quasiconical theory. MW = 1.02; CY = 6 . 0 
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Figure 21.- Wing-plane resu l t s  for free air and slotted-wall tunnel. 
Moo = 0.98; CY = 12'. 
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Figure 22. - Effect of tunnel wal l  on shock-wave and sonic-line locations. 
M, = 1.02; = 10'. 

Leading-edge separation.- The resul ts  of the present method fo r  the dependence of 
the lift coefficient CL on the angle of attack a, fo r  separated flow past a delta wing 
are compared with experiment and the resul ts  of other methods in figure 23. 
parisons for  low-speed flow are presented on the left side of the figure. The experi- 
mental data a r e  those of Peckham (ref. 38). It is seen that the resu l t s  of both Brown 
and Michael (ref. 20) and Smith (ref. 39) overpredicted the data, the latter being more 
accurate than the former,  and the resul ts  of the suction analogy of Polhamus (ref. 40) are 
essentially in agreement with the data. It is also seen that the resul ts  of the present 
method overpredict the data to about the same degree as those of Smith. The suction 
analogy was not employed in the present method because the spanwise effects of vorticity 
cannot be determined with i t  in its present form.  
M, = 1.96 are shown on the right side of the figure. The experimental data a re  those of 
Hill (ref. 41). It is seen that the trends for  supersonic flow are the same as those for  
low-speed flow. 
reference 42. 

The com- 

Results f o r  supersonic flow with 

The suction-analogy resul ts  for  supersonic flow were obtained from 

The effects of leading-edge separation on transonic flow past  a lifting wing body 
are shown in figure 24. In this figure the resul ts  for attached and separated flow past a 
wing-body combination with M, = 0.98 and = 6' are compared. On the left side of 
the figure it can be seen that the only effect of leading-edge separation on the shock-wave 
and sonic-line locations in the wing plane is the slight backward shift of the rear shock 
toward the trailing edge of the wing. The body surface pressure  distributions in  the wing 
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plane are compared on the right side of the figure. 
pressure  distribution both above and beneath the wing considerably. 

It is seen that separation affects the 

The coefficients fo r  the total lift L = Lo + L1 and the l inear lift L1 for  attached 
and separated transonic flow past the configuration depicted in figure 24 are compared 
in figure 25. 
0' < Q! < 9'. 
waves. 
which was used to obtain these results,  overpredicts the effect of separation on the lift 
coefficient. It can be seen that the present resul ts  show a small  increase in lift due to 
nonlinear ef f e c t s . 

The Mach number is M, = 0.98 and the angle-of-attack range is 
The nonlinear lift t e rm Lo is due primarily to the presence of shock 

It should be noted that the Brown and Michael model f o r  leading-edge separation, 

The resul ts  for  flow past  a configuration which has a strake-generated vortex over 
the wing are compared with the resul ts  for  attached flow for  a Mach number and angle of 
attack of M, = 0.98 and (Y = 6O, respectively, in figure 26. 
the strake and attached on the main par t  of the wing. The vortex which was generated by 
the strake is located over the inboard portion of the wing aft of the point where attached- 
leading-edge flow begins. 
essentially unaffected by the vortex and that the pressure  distribution is affected appre- 
ciably only on the strake.  

The flow is separated on 

It is seen that the shock-wave and sonic-line locations are 

The effects of leading-edge separation on the pressure  distribution of the wing body 
depicted in figures lO(a) and l l (a)  for  Mach numbers appreciably different f rom 1 are 
shown in figure 27. 
ogive-cylinder-ogive body where the length of each ogive is one quarter  of the body length. 
The angle of attack is 9'. 
Mach numbers 0 and 1.4. 
the intersection of the body surface and the wing plane. 
of the wing is the root-chord pressure  distribution. 
flow the load a t  the wing root is larger  fo r  attached than for  separated flow. However, the 
lift coefficients for  attached and separated incompressible flow fo r  (Y = 9' are 0.63 
and 1.14, respectively. The apparent discrepancy is due to the fact  that the lift due to the 
leading-edge vortex is exerted mostly on the outboard portion of the wing. In figure 27(b) 
it is seen that the effect of the leading-edge vortex on the root-chord pressure distribution 
is also small  f o r  supersonic flow. However, the lift coefficients fo r  attached and separated 
flow at these conditions are 0.80 and 1.02, respectively. 

The configuration is composed of a flat-plate delta wing and an 

Results fo r  separated and attached flow a r e  compared for  
The pressure distributions which are shown are those along 

It is seen that fo r  incompressible 
This distribution in the vicinity 

Swept trailing edge.- The resul ts  for  attached and separated flow past a configura- 
tion with a swept trailing edge are compared in figure 28. The free-s t ream Mach number 
and angle of attack are M, = 0.98 and CY = 4O, respectively. It is evident f rom the fig- 
ure  that the rear shock wave intersects the body upstream of the swept trailing edge. The 
present method does not yield good resul ts  a t  points where a shock wave intersects a 
swept trailing edge. 

50 



Total lift f o r  separated flow 
--- Linear  lift f o r  separated flow 
------ Total lift f o r  attached flow 
--- - Linear  lift f o r  attached flow 

ff, deg 

Figure 25.- Total and linear lift for attached and separated flow 
about configuration depicted in figure 24. Moo = 0.98. 

Flow with strake-generated vortex 
Attached flow - - - -__  

Shock-wave and sonic-line locations 
- .4 

-.2 

.2 

.4 

Body p res su re  distribution 

- I 
0 

Figure 26.- Effect of strake-generated vortex on flow in wing plaiie. 
0 Mm = 0.98; CY = 6 . 
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Separated flow 
Attached flow ----- 

I 
I 

I 
I 

I 

.2 .4 .6 .8 1.0 
I 

x/Q 

- 
0 

(a) Mm = 0. 

Figure 27. - Effect of leading-edge separation on body pressure  distribution 
0 in wing plane of configuration shown in figure lO(a). a = 9 . 
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Separated flow 
Attached flow - -___  

Windward 

1 I 
.2 .4 .6 .8 1.0 

1 
0 

x/Q 

(b) Moo = 1.4. 

Figure 27.- Concluded. 

- Separated flow 
- - - - -  Attached flow 

Shock-wave and sonic-line locations 

- a 4  r 

cP -*:I .2 

.4 LL 0 

Body p res su re  distribution 

Leeward 

x/Q 

Figure 28.- Comparison of wing-plane resul ts  for separated and attached flow past  
configuration with swept trailing edge. M, = 0.98; a! = 4O. 
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Lifting Transonic Area Rule 

It has been shown that far f rom a lifting configuration traveling at near-sonic speed, 
the flow field is s imilar  to that about an axisymmetric body with a cross-sectional area 
distribution which depends on both the lift and thickness distributions of the configuration. 
This modified area distribution is given by equation (74). As noted previously, the second 
t e rm on the right side of this  equation has a coefficientwhich must be determined exper- 
imentally or  analytically. In figure 29 the shock-wave and sonic-line locations in the 
wing plane of a lifting configuration a r e  compared with those of several  axisymmetric 
bodies with cross-sectional area distributions obtained f rom equation (74) with several  
different values of the constant B. 
and a! = 6 , respectively. 
fo r  the axisymmetric configurations l ies  behind those for the lifting configuration. 
phenomenon occurs because i t  is assumed in the present approximate method for  lifting 
configurations that the lift solution is of the slender-wing type. Consequently, the char-  
acter is t ics  of the lift solution are vertical. A s  a result ,  the present approximate method 
tends to locate those nonlinear lift effects which occur a t  large radial distances f rom the 
configuration slightly upstream of their actual location. It is seen that the radial extent 
of the supersonic region for  the axisymmetric lift-equivalent body obtained with the value 
B = 3.8 is the same as that for the wing-plane resul ts  for  the lifting configuration. 

The Mach number and angle of attack a r e  M, = 0.98 
0 It can be seen in figures 29 and 30 that the supersonic region 

This 

The constant B should depend only on the configuration geometry for near-sonic 
In figure 30, axi- 

and lifting-configuration resu l t s  are 
flow; it should be independent of the angle of attack and Mach number. 
symmetric results obtained with the value 
compared fo r  different Mach numbers and angles of attack. 
agreement i s  obtained with this value of 
agreement i s  obtained at different Mach numbers. 

B = 3.8 
It is seen that reasonable 

at different angles of attack and excellent B 

It can be shown that the coefficient B is dependent on the configuration geometry. 
The configuration depicted in figures 29 and 30 is composed of a flat-plate wing with the 
planform shown and a body of revolution with a parabolic-arc generator and a fineness 
ratio of 10. In figure 31 resul ts  are presented for  a configuration composed of the same 
wing and a body with an elliptic generator and a fineness ratio of 10. 
and angle of attack are Moo = 0.98 and (Y = 6O, respectively. 
configuration the coefficient B has a value of 2.9. 

The Mach number 
It is seen that fo r  this 
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- Lift solution in wing plane 
- - - - Axisymmetric solution 

B = 2.2 B = 3.8 B = 5.0 

Figure 29.- Determination of coefficient B in lifting transonic area rule. 
CY = 6'. Mm = 0.98; 

- Lift solution 
- - - - Axisymmetric solution (B = 3.8)  

M,= 0.98; a = 6' 

< 

' I  
' I  

M,= 0.99; a = 6' 

Figure 30.- Comparison of wing-plane resul ts  for  lifting and equivalent axisymmetric 
flow past  configuration with parabolic-arc body. 
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Lift solution 
----- Axisymmetric solution (B = 2.9) 

Figure 31.- Comparison of wing-plane resul ts  for lifting and equivalent axisymmetric 
flow past  configuration with elliptic body. M, =0.98; a = 6  0 . 

CONCLUDING REMARKS 

An approximate method for  calculating transonic flow about lifting wing-body con- 
figurations has been developed. The nonlinear, three-dimensional physical problem is 
reduced to a two-variable computational problem which is solved with the method of 
relaxation. The Mach number range in which the method is applicable extends from ze ro  
to low supersonic and the angle-of-attack range extends to angles of the order  of the con- 
figuration thickness-length ratio. 
separation, and wind-tunnel wall effects. A modified form of the transonic area rule 
which accounts for  the effect of lift is developed. 
physical considerations. 

The method accounts for shock waves, leading-edge 

This effect is explained f rom simple 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, Va. 23665 
November 26, 1975 
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APPENDIX A 

CONFIGURATION GEOMETRY 

The configurations which are treated in this  report  a r e  composed of axisymmetric 
bodies and flat-plate wings. The body and wing geometry which were incorporated into 
the computer program (ref. 18) used to calculate the resu l t s  presented in this report  are 
discussed in  this appendix. 

Body Geometry 

In this report  the body shape rb(x) i s  specified by equation (2), where t is the 
maximum body thickness and Fe(x) i s  the body thickness distribution. Four basic body 
shapes are treated. These are the ellipse with 

Fe(x) = 2J;t-;;"- 

a general pointed body with 

where the maximum radius is located a t  

1 - 
n-1 1 

2 
x c = l  - (;) < -  

and where 

1 C =  

o r  

Fe(x) = C(x - Xn) 

where the maximum radius occurs  at 
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and where 

1 C =  
xc - xcn 

a cone with 

F,(X) = x 

and an ogive-cylinder-ogive with 

F,(X) = 8 ~ ( 1  - 2 ~ )  (0 5 x I 0.25) 

F,(X) = 1 (0.25 I x 9 0.75) 

F,(X) = 8(1 - x ) ( ~ x  - 1) (0.75 5 x 5 1) 

The equations for  the general pointed bodies were developed by McDevitt and Taylor 
(ref. 43). 
sting can be simulated at  the rear. 

The basic body shapes are depicted in figure 32. A s  the figure indicates, a 

Wing Geometry 

The leading and trailing edges of the wing are specified by the function y2(x) 

Two types of leading-edge shapes are considered. 

and 
yl(x), respectively. 
the axis o r  swept. 
isfy the condition dy 

In this report  the trailing edge i s  a straight line; it may be normal to 
Both shapes sat-  

dx = 0 a t  the trailing edge so that the Kutta condition is satisfied. 
2 1  

The f i r s t  leading-edge shape, which is depicted in figure 33, i s  a portion of a hyper- 
bola. 
semispan is b. The foci of the hyperbola lie on the line x = x3, and the asymptotes 
of the hyperbola have the slopes B1 and -B1 and intersect at the point x = x3, 
y = (1 + A)b. 

The leading edge intersects the x-axis at x l ,  the wing ends a t  x3, and the wing 

The equation for  this leading edge is 

Y ~ ( x )  = b I (1  + A) - 1-J A + (1 + 2A) 
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Ellipse Cone 

General pointed body, maximum Ogive - cy linde r - ogive 
rad ius  ahead of midpoint 

General  pointed body, maximum 
radius  behind midpoint 

Figure 32.-  Basic body shapes. 

Y 
Asymptotes of hyperbola 

Figure 33.- First leading-edge shape. 
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The second leading-edge shape, which is depicted in figure 34, is constructed of two 
or  three straight-line segments which are connected with the transition function of the 

Y 

x1 xII x3 

Figure 34. - Second leading-edge shape. 

- -  x 

first kind of Grabau (ref. 44). Three straight-line segments a r e  used if the wing has  a 
strake; otherwise, two segments are used. A s  before, the wing ends at  x = x3. If the 
wing has a strake, the leading edge emerges f rom the body a t  x = xl .  For wings with no 
s t rake the point x = x1 is where the leading edge c rosses  the x-axis. The line seg- 
ments yI and yII intersect at the point 

A1 - A2 XI = 
B2 - B1 

B2A1 - B1A2 

B2 - *1 
YIO = 

and the segments yII and y intersect at  the point 111 

b - A, 

The values of y2 a t  xI and xII are 

= Y I O P  + 
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For a wing with a strake the equation for y (x) is 2 

B X - x  
y2(x) = A1 + B1x + (B2 - BlNX - X I )  2 (  II) 

1 - expck l (x  - xI)3 1 - expck2(X - xn)] 

where 

kl  = B2 - B1 

Y I O A l  

B2 k -- 
2 -  bA2 

For a wing without a strake the equation for  y2(x) is 

B X - x  
y2(x) = A2 + B ~ x  - 2( 11) 

1 - expck2(x  - xn)) 

If the trailing edge i s  swept, the function yl(x) is 

2 x - x  
Y&X) = b 

x3 - x2 

where x2 is the point where the trailing edge intersects  the x-axis 

61 



APPENDIX B 

REVIEW O F  ANALYTICAL SOLUTION FOR TRANSONIC FLOW 

ABOUT LIFTING CONFIGURATIONS 

In this appendix the analyses of references 13  and 15, on which the approximations 
used in this report  are based, are reviewed. 
and slender-body theory and which are performed with the method of matched asymptotic 
expansions, show the general  form of the solution but do not completely determine it.  

These analyses,  which use slender-wing 

It is well known that in the transonic flow regime disturbances propagate large dis-  
tances outward in directions perpendicular to the f ree-s t ream velocity vector. 
quently, the characterist ic length scale in the radial  direction must be large except in the 
immediate vicinity of the configuration, where radial  disturbances are scaled by the char-  
acterist ic radial dimension of the configuration. The regions close to the configuration 
and at large distances f rom the configuration are generally referred to as the inner and 
outer regions, respectively. 
turbances in the inner and outer region are written as P and P/v, respectively, where 
v is a positive dimensionless parameter such that 

Conse- 

For the present problem the radial length scales of the dis- 

and where 
the same longitudinal length scale applies in both the inner and outer regions. 
of 
radial variables in the outer and inner regions a r e  related as 

P is the longitudinal length scale of the disturbances. It should be noted that 
The value 

The P is of the order  of the configuration length, but i t s  precise  value is not known. 

In the outer region the perturbation velocity potential can be expressed as 

(p(x,r,w) = E ~ + ~ ( x , F , w )  + E ~ @ ~ ( X , ~ , W )  + .  . . 

where the gage functions e i  satisfy the inequalities 
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The relative magnitudes of v, e l ,  and the quantity 1 - Mm2 can be determined f rom 
a study of the governing equation (3). 
as 

In the outer region this equation can be expressed 

2 a2+ a q  a +1 
(1 - M 2 )  4 + 2722@1 = el(y + 1) - - 

ax ax ax2 

Since equation (B4) must reduce to the standard linear forms  f o r  subsonic and supersonic 
flows, the two t e rms  on the left must be of the same order  of magnitude. Since the coef- 
ficient of the derivative a2a1/ax2 must change sign in the transonic region, the term 
on the right must be of the same order  of magnitude as the first t e rm on the left. It 
follows that v, e l ,  and 1 - Mm2 may be related as 

2 1 - Mm 2 
1 =  K v = €  

where K is an order-one constant. Cheng and Hafez (ref. 15) argue that the similarity 
laws for flow about lifting configurations must reduce to those for flow about nonlifting 
configurations as the angle of attack i s  diminished. Consequently, v must be propor- 
tional to 6. In this report  i t  is assumed that 

The relationship between the angle of attack a! and the other parameters  can be estab- 
lished only after the nature of the solution in the inner region i s  determined. 

It is shown in reference 13  that the perturbation velocity potential in the inner 
region can be expressed to second order  in CY and 6 as 

The governing equations for  the component potentials in this expansion a r e  obtained fol- 
lowing substitution of the expansion into equation (2) and collectinn of t e rms  of the same 
magnitude. 
isfy the two-dimensional Laplace equation in the cross-flow plane. 

It is found that all the potentials in the expansion (eq. (B7)) except @ 2  sat- 
For  example, 
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The potential @2 satisfies the Poisson equation 

The potentials q and q6 are the slender-body thickness potentials, and q51 
6,1 

is the slender-wing lift potential. It is well known that cp can be written as 
671 

and that fo r  large values of r, p6 and G1 can be written as 

where gJx) is an unknown function of x, Fe(x) is the nondimensional thickness dis t r i -  
bution of the equivalent axisymmetric body f o r  the configuration, and f(x) is the axial 
distribution of the dipole strength f o r  the lifting configuration. The pr ime denotes differ- 
entiation with respect to x.  It is also well known that equation (B10) f o r  p6 applies f o r  
all the way to the body surface if the body is axisymmetric, and that very near the config- 
uration surface $1 can be written as 

where the plus and minus signs apply on the leeward and windward s ides  of the configu- 
ration, respectively. The lift potential is discussed in detail in appendix C. 

@2,1, and $2. Now consider the second-order potentials @2,2, It is shown in 
reference 13  that the pertinent solutions f o r  q5 and q5 are 

272 271 

0313) 

@2,2 = g2,2(x) 

where the functions g2,2 and g2 
resul ts  of reference 13  that the particular solution for  $2, which is governed by equa- 
tion (B8), can be written as 

are ,  a t  this point, unknown. It can be seen from the 
Y 
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where X = y + iz is the complex variable in the cross-flow plane and the aster isk 
denotes the complex conjugate. From equation (6) it can be shown that G2 must satisfy 
homogeneous Neumann boundary conditions a t  the wing surface. 
plementary solution fo r  G2 can be written as 

Consequently, the com- 

1 P P 
(X,S,+O) - - a'2 (x,s,-0) loge@s - X)(s - X*g d s  (B15) az @2c = g2(x) - 

where the function g2(x) is unknown. If the trailing edge of the wing is not swept, the 
lower limit of integration in equation (B15) is 0. It w a s  pointed out by Cheng and Hafez 
(ref. 15) that the solution @2c f o r  attached flow exists only if the derivative @ l T  is 
finite a t  the leading edge of the wing. Note that f o r  this  case it is necessary to bend the 
leading edge of the wing in order  to enforce the condition on G I T .  In reference 13 it is 
shown that the solution obtained in reference 15  is valid to a f i r s t  approximation for  the 
case of leading-edge separation. A s  a result ,  it  is possible to t reat  the problem of flow 
past flat-plate wings. 

It is shown in reference 13 that the sum of equations (B14) and (B15) can be written 
for  large values of r as 

The function m(x,y) in equation (B17) is written as 

and the notation P.V. designates the principal value of the integral. It should be noted 
that with the aid of equation (Bl l ) ,  equation (B8) for  can be written for  large values 
of r as 

G2 
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v2 2 G2 =+f?(l - cos 2 0 )  +-  2ff' 
r 2 1-4 

and that the particular-solution t e rms  on the right side of equation (B16) can be obtained 
easily f rom equation (B19). 

The dependence of the angle of attack a, and the gage functions e2 and e 3  in 
the outer expansion for  cp on the equivalent thickness ra t io  6 can now be determined 
by inspection. 
comparable. 
depend on both lift and thickness effects. 
for  cp fo r  large values of the inner radial variable r in t e rms  of the outer radial var i -  
able 
expression be equal to e l  = 62. The gage functions of the second and third largest  t e r m s  
are then equated to e 2  and e3, respectively. From equations (B2), (B6), (B9), (BlO), 
(B l l ) ,  (B13), and (B16), it is seen that the inner expansion (eq. (B7)) can be written for  
r >> 1 in t e rms  of F as 

By assumption, the effects of lift and thickness in the outer region are 
Formally, this means that the leading t e rm in the outer expansion must 

The procedure is to write the inner expansion 

F and to require that the gage function of the largest  lift t e rm in the resulting 

sin w + Fe(x) Fe'(x) log, I: + 6 s in  a, f(x) I r 

I f "  2 loge2 F + cos 2 0  +- Y + l f  ( t ,3 8 

In reference 13 it is shown that if equation (B6) is to be valid, the t e rm with the gage func- 

tion sin a, log, '(t) must vanish identically. It can be shown that if this were not the 

case,  the te rms  in the inner expansion (eq. (B7)) of third and higher order in 
written in t e rms  of I: for  r >> 1 would have gage functions larger  than e l  = 6 . A s  
a result, i t  follows from equation (B20) that 

sin a! when 
2 

g2 2(x) = - y+l f'(x) f"(x) 
7 4 

66 



APPENDIX B 

a6 sin a! = 

where a is an order-one constant. The second and third largest  gage functions in equa- 
tion (B20) are 

a62 e 2  = 6 sin a! = (B22a) 

(B22b) 

It  can be seen from equations (B4) and (B5) that the governing equation for the 
outer potential CPl is 

a2Gl aQjl a 2 C P ~  

K -  + V22CP1 = ( y  + 1)  - - 
ax 2 ax ax2 

When the outer expansion (eq. (B3)) i s  substituted into the governing equation (3) for  
it is found with the aid of equations (B5), (B6), and (B22) for the gage functions 
and e 3  that the outer potentials a2 and CP3 a r e  governed by the equations 

cp, 
E 1, E 2 ’  

and 

respectively . 
Equations (B23), (B24), and (B25) can be solved iteratively in the inner par t  of the 

outer region where r << 1 .  For example, equation (B23) is written as 
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The complementary solution to the left side of this equation is obtained. This solution is 
used to evaluate the t e r m s  on the right-hand side of the equation to render it a Poisson 
equation. Then the particular solution is obtained. This process  can be continued until 
the desired number of t e r m s  has  been found. It should be noted that the coefficients of 
the complementary solutions are arb i t ra ry  functions of x. 
evaluated by matching the outer expansion with equation (B20). The outer potentials (P1, 

a2, and 

These coefficients can be 

are thus found to be 

= G ~ ( x )  + F,(x) F,'(x) + -a Y + l  2 f ' k )  c 2 

sin w @ - f (x)  v + . . 2 -  r 

@ - G x + H'(x) loge? + e f ' ( x )  f"(x) loge2r + COS 
3 -  3 0  8 

The functions G1(x) and G3(x) in equations (B26) and (B28), respectively, cannot 
be determined with this method. 
source. The doublet effect appears in the second approximation. 

Note that to lowest order  the effect of lift is that of a 

An expression for the effective cross-sectional area of a lifting wing-body config- 
uration can be obtained f rom the resul ts  of this appendix. The source strength of the 
potential for  large values of the radial coordinate is proportional to the lengthwise deriv- 
ative of the cross-sectional area. From equations (B3), .(B5), (B22), (B26), (B28), and 
others,  it can be seen that the source strength is of the form 

2 
e ( i )T 6 2 F,F~' + sin 2 a! log Y + f'f" + sin Ly H' 

Consequently, the effective cross-sectional area Seff, which is 2a t imes the integral 
with respect to x of the source strength, is of the form 

The f i r s t  term on the right-hand side of equation (B29) is the actual cross-sectional 
area of the configuration. 
involves this te rm.  
f i r s t  described in reference 1 2 .  The third t e rm in equation (B29) is the higher order  

The transonic area rule as formulated by Whitcomb only 
The second te rm is the dominant area-due-to-lift term which was 
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area-due-to-lift t e rm found by Cheng and Hafez (ref. 14). It can be seen f rom equa- 
tion (B17) that this t e rm is composed of two integrals, the first a double integral and the 
second a single integral. With equations (B12), (B18), and (D25), the second integral can 
be approximated as 

m(x,s) d s  = 27r f(x) 

From the form of equation (B30) it follows that the x-derivative of the function m(x,y) 
can be written as 

where mp is a slowly varying function of x. For  conical flow m is independent 
of x. It follows from equations (B17), (B29), (B30), and (B31) that the expresgion for  the 
effective cross-sectional area can be written as 

P 

2 
(x) +& B F i n  a, f '(xfl + 2 sin 

ef f 2 
(3332) 

where 

(x,s) P.V. st=' mp(x,t) (= S + log, It - S I  dt d s  (B33) 
t=-1 

A precise value fo r  B cannot be obtained f rom equation (B33) since the length scale 
is not known. It should be noted that the double integral is, at best, a slowly varying 
function of x. 

Q 

69 



APPENDIX C 

LIFT POTENTIAL FOR NEAR-SONIC FLOW 

The slender-wing lift potential is used in this repor t  fo r  near-sonic flow. This 
potential is governed by the equation 

and satisfies the boundary conditions 

-(x,rb,e) a %  = 0 
ar 1 

where x, r, and e a r e  body-oriented cylindrical polar coordinates. In this appendix 
this potential is derived for  attached flow past  configurations with swept leading edges 
and swept leading and trailing edges, and separated-leading-edge flow past configurations 
with swept leading edges. 

Attached Flow Past  Configurations With 

Swept Leading Edges 

A cross  section of the wing-body configuration is shown in figure 35. The solution 
for  attached flow past this configuration was obtained by Spreiter (ref. 6) and Ward (ref. 7). 
Le t  the complex variable in the cross-flow plane be 

Z X-plane 

t 

Figure 35.- Cross  section of configuration composed of 
circular body and flat-plate wing. 
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The complex potential for this problem is written as 

w(~ ,x>  = i@ - y(x,xfl 

where 
.. -- . 

Y(X,X) = / i X  +$)” - (y2 +$I 
The cross-flow perturbation velocity potential is 

+ 

For  large values of r,  equation (C3) can be written a s  

= i X 5 y 2  I 2 ( 1 + -  ‘b:) 1 y24 ( 1 - -  ‘b:) + . .  
y2 8 x2 y2 
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Thus, the perturbation velocity potential for l a rge  values of r can be written as 

where 

The quantity f(x) is the local dipole strength of the lifting configuration. 

Attached Flow Past Configurations With 

Swept Leading and Trailing Edges 

The derivative a @ a ,  f o r  this problem has been derived by Mirels (ref. 32) and 
It should be noted that in addition to the boundary conditions given by Mangler (ref. 24). 

equations (Cl), the boundary condition 

-(x,y,O) = 0 
ax 

is also used. The solution is obtained in t e rms  of the transformed complex variable 

(C9) z = x - -  'b2 
X 

The physical and transform planes are shown in figure 36. It is shown in reference 32 
n 

that the derivati.ve - a'w is written as 
ax az 

where 
2 

'b 1 7 1 = y 1 - -  
Y 1  

2 
'b r l 2 = y 2 - -  
y2 I 
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X-plane 

'b 

- * Y  - 
y1 y2 

( 4 . 9  

The function S(x) 
dition at the trailing edge, and K and E are complete elliptic integrals of the f i r s t  and 
second kinds with the modulus 

is the function Mirels  (ref. 32) developed f o r  enforcing the Kutta con- 

2 -plane 

2i rb 

t * r l  
171 172 

It should be noted that Mirels'  S-function is identical to the function H used by Mangler 
(ref. 24). 

The complex potential W, and consequently the perturbation potential can be 
obtained by integrating equation (C10) with respect  to Z and x. However, as Mirels  
and Mangler point out, it is very difficult to perform these integrations and the lift can be 
obtained from equation (C10) comparatively easily without f i r s t  obtaining Conse- 
quently, @a and aGa/aX are not determined at  points near the configuration in this 
report .  

Ga. 

The derivative a@,/ax can be determined approximately in the outer par t  of the 
flow field. At large distances f rom the configuration equation (C10) can be written as 

Consequently, the derivative aW/ax can be approximated as 

aW - L, 7 
ax z 2 2' 

S(X) 1 - - [ :g -- 
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Therefore, for  large values of r, the derivative a$  ax can be approximated as 
a/ 

In this report  two approximations are made which simplify equation (C13). First, 
i t  is assumed that the derivatives yl' and y2' satisfy the inequality 

Mirels (ref. 32) shows that as a result  of inequality (C14), the function S(x) for  a wing 
can be approximated as 

1 S(x) = 

F y2 

The second approximation is that of Mangler (ref. 24) fo r  the function E(k)/K(k) which 
is written as 

With the approximations given by equations (C15) and (C16), equation (C13) can be written 
as 

where 

/ x 

Separated Flow Past  Configurations With Swept Leading Edges 

In this report  two types of flow fields with vortices a r e  considered. The f i r s t  is 
leading-edge separation, and the second is flow with inboard strake-generated vortexes. 
These flow fields are depicted in figure 37. 
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Cross  section Cross section 

Top view Top view 

locations locations 

(a) Leading-edge separation. (b) Strake-generated vortex. 

Figure 37.-  Flow fields with vortexes. 

The problem of leading-edge separation w a s  f i r s t  treated successfully by Brown 
and Michael (ref. 20) for  the case of flow past a delta wing. 
complicated leading-edge-separation models have been developed and could have been 
used, the model of reference 20 is employed here  because of i t s  simplicity. 

Although several  other more 

The complex potential for the Brown and Michael model for separated-leading-edge 
flow past a flat-plate-wing, axisymmetric-body configuration is 

J 

where X and Y are given by equations (C2) and (C4), respectively, and where 

L d 

is the vortex location in the Y-plane. 
a ry  conditions given by equations (Cl). 
condition must be satisfied at  the leading edge and the force on the system composed of 
the vortex core and vorticity feeding sheet, which extends from the leading edge to the 
core, must be zero. 

The potential in equation (C19) satisfies the bound- 
Brown and Michael show that in addition, a Kutta 

These conditions are expressed as 
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and 

respectively. 
tion, equation (C21), is not enforced and the vortex strength becomes constant so that the 
left side of equation (C22) vanishes. The solution procedure is given in appendix G. 

For the problem of flow with a strake-generated vortex, the Kutta condi- 

The problem of separated flow past  a delta wing can be used to gage the effect of the 
vortex in the outer par t  of the flow. It is shown in reference 20 that to lowest order  in 
sin o! the location of the vortex in the X-plane is 

zv = x sin a 

It  follows that in the outer par t  of the flow where 

the perturbation velocity potential is 

Consequently, for  small  angles of attack the second t e rm in equation (C24), which is due 
to the vortex, could be ignored in the outer par t  of the flow. 
ignored in this report  because i t s  inclusion presents  no particular difficulty. 

However, this te rm is not 

The influence of the vortex on the flow far f rom a general configuration can be 
determined from equation (C19). For large values of r and hence large magnitudes 
of Y, the logarithm in equation (C19) can be approximated as 
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Consequently, the potential 
equation (C6) where 

at  large distances f rom the configuration is given by 

f(x) = 1 2 2  y 2(x) ( + 3) + 2Avyv(y2 + $) 
If the flow is separated at 
tion (C21) applies. It can 
form 

the wing leading edge, the boundary condition given by equa- 
be shown that this boundary condition can be written in the 

If the flow is not separated at  the wing leading edge but a strake-generated vortex is 
present, y ,  does not vary with x aft of the strake and has the value given by equa- 
tion (C26) at  the time that leading-edge separation ceased. 

to account fo r  the effect of the derivative aGol/ax on the coefficient of the a2qo/ax2 
t e rm in equation (55). of this derivative which applies in 
the region near the axis is used to approximate the values at  all points inside the wing 
tip. near the 
axis is ,  approximately, 

In order  to account fo r  nonlinear behavior at points where r < y2(x), it i s  necessary 

In this report  the value uol 

From equation (C19) it can be shown that if rb << y2, the potential 

Consequently, the derivative ua! - - - in the region near the axis is 
ax 
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The function Yv(x) given in equation (C20) is related to the vortex core location 
= yv + izv by the equation 

It can be shown from equations (C20) and (C28) that f o r  rb << y2, the equations for 
and rV a r e  

f .  

If 1 - y y2  << 1 and zv/y2 << 1, as is the case for  separated-leading-edge flow past  
a wing a t  a small angle of attack, it follows from equations (C29) that 

v/ 

h, << 11 

With the f i r s t  of equations (C23) it can be shown that for the particular case of separated 
flow past a delta wing, equations (C29) can be written as 

If 1 - yv/y2 = 0(1) and zv/y2 CC 1, as is the case for a strake-generated vortex over 
the wing, the values of hv and rv are of the form 
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(C31a) 

(C31b) 

With equation (C26) and inequalities (C30) it can be shown that if  the flow at the 
leading edge is separated, equation (C27) can be approximated as 

With equations (C31) it can be shown that if there i s  a strake-generated vortex over the 
wing, equation (C27) can be approximated as 

In order  to satisfy the Kutta condition to lowest order,  it  i s  necessary to correct  
fo r  the influence of the vortex on the flow a t  the trailing edge. 
solutions used in this report, the attached-flow portion of the trailing-edge Kutta condition 
is satisfied by the condition that y2f 
lows from equation (C32) that if the flow a t  the leading edge is separated, the influence of 
the vortex on the flow on the inboard portion of the wing is 

For all the slender-wing 

Consequer_tly, it fol- vanish at  the trailing edge. 

It can be seen f rom equation (C33) that if there  i s  a strake-generated 
wing, the influence of the vortex on the flow on the inboard portion of 

vortex over the 
the wing is 
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This equation can be simplified as 

(1 - rv)'b' + hvTv' 

(l - TV) + xv 
2 2 

= 2rv 

A$;,g = --kv 2% 7 %  - - r / )  
1 + -rv 1 + rv 

(C35a) 

(C3 5b) 
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LIFT POTENTIAL FOR SUBSONIC AND SUPERSONIC FLOW 

In this report  approximate methods are used to determine the lift potential 
for  subsonic and supersonic flow. In 
addition, a generalization of the Brown and Michael model to subsonic and supersonic 
flow is given. 

These methods are described in this appendix. 

Solution fo r  Subsonic Flow 

The approximate theory of Lawrence and Flax (ref. 21) f o r  subsonic flow past  wing 

The theory of references 21 and 25 is restr ic ted to wings with 
bodies is used in this report. 
(ref. 25) for  wings alone. 
unswe p t trailing edge s . 

This theory is a generalization of the theory of Lawrence 

The transformation given in equation (C9) is used to relate the flow past  a wing 
body to that past a wing alone. 
tity q2 is related to y2 and rb by the second of equations (C11). 

These flow fields are depicted in figure 38. The quan- 

2 

f X-plane 

5 

Z -plane t 

(a) Wing-body plane. (b) Wing plane. 

Figure 38. -  Wing-body and wing cross-flow planes. 

Lawrence employs the equation 

’I 
d ( s  - x ) ~  + (1 - M 2 ) ( 9  - t)2 

L +  (D1) x - s  

to determine the downwash on a wing. 
of the wing are at xo and xt, respectively, and Q is the x component of pertur- 
bation velocity on the upper surface. 

The foremost points on the wing and trailing edge 

Equation (Dl)  is an  exact integral solution to 

81 

I 



APPENDIX D 

equation (9) which was developed by Reissner (ref. 45). Lawrence evaluates this equation 
by using the crucial  approximation 

- 

/ m ) ( y  - t)2 = L[x 2 - SI + , / ( ( 2 1 2 2 ( i ]  (D2) 

A s  noted in reference 25, this' approximation was chosen because equation (Dl) reduces to 
the l imits of slender-wing theory and two-dimensional theory when approaches zero 
and infinity, respectively, when the approximation is used. The boundary condition on the 
wing is 

q2 

%x,y) = -(y 

With equations (D2) and (D3), equation (Dl) can be written as 

c 

Equation (D4) is used in the integral form 

r 
2(x - s) 

It is shown by Lamb (ref. 46) that any two potentials @l and which satisfy 
the two-dimensional Laplace equation 

also satisfy the integral equation 
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where S is a closed path in the plane and n is the coordinate normal to the curve S. 
For this problem the path S is chosen along the surface of the wing so that the normal 
coordinate is simply t .  Let the potential q2 on the surface and i t s  normal derivative 
be 

J a*2 -(x,q) = -1 
a t  

It can be shown with slender-wing theory that 
related as 

ql and i t s  normal derivative can be 

For  this problem let 

With the choices given in equations (D7) and (D9) for  q2 and ql, respectively, and 
with the relation given by equation (DB), it can be shown that integral equation (D6) for  
this problem can be written as 

where 
the potential $I by the equation 

a , u  

GU is the upper-surface value of a lift potential which, in general, is related to 

2 
'b sin w @u = %,u - 
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Let the functions E(x) and g(x) be defined as 

With equations (DlO), (D12), and (D13), equation (D5) can be written as 

Let the variables (J and 7 and the function ;(a) be defined by the equations 

x = - x  ;[t + x  0 + ( x t - xo) cos g 
s = - x t + x  + x cos j 2 '[ 0 ( t - X O )  

and 

With equations (D15) and (D16), equation (D14) can be written as 

7 = T  -7r- 
g'(7) dT + r'- H(o,7) g'(7) d 7  (D17) 

C O S  7 - C O S  (J b-0 

where 

84 



APPENDIX D 

Equation (D17) is an integral equation for  the function g(a). 
numerically by colocation. The procedure used is that outlined in reference 25. The 
form assumed fo r  g(a) is 

This equation is solved 

where 

It will be shown that as a resul t  of the form of equation (D19), the trailing-edge Kutta 
condition is satisfied to lowest order .  

The function g(x) is related to the load on the configuration between the .apex and 
the station x. 
shown that the contour integral in equation (66) can be written as 

The linear lift is given by equation (66). With equation (D11) it can be 

Let the contour 
the integral along the body surface is related to that along the wing as 

C lie along the body and wing surface. It is shown in reference 2 1  that 

Consequently, the contour integral on the right side of equation (D20) can be written as  

Thus from equations (66), (D20), and (D21), it  is seen that the linear lift Ll(x) is related 
to g(x) as 

L1(x) = cos a! sin a! 2g(x) + mb (x) (D22) c " 3  
With equations ( l l ) ,  (12), and (66), a similar  relationship between L1(x) and the 

function f(x) can be established. This relationship is 
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From equations (D22) and (D23) it follows that f(x) and g(x) ar? related as 

and from equations (Dl l ) ,  (D13), and (D24), it  follows that f(x) 
of wing surface potentials $I 

is related to the integral 
and @ as 

@ , Q  @ YU 

The method of Lawrence does not provide a means f o r  determining the pressure  at 
isolated points. In this report  approximate values for  the pressure  are obtained by using 
the assumption that the spanwise pressure  distribution is functionally the same as that 
obtained with slender-wing theory. The l inear lift on the configuration can be written as 

A comparison of equations (D22) and (D26) shows that 

The spanwise integral of the pressure  coefficient is obtained f r o m  equation (D27) as 

on the wing alone is expressed in a form pcoportional to 
‘P, Q 

The pressure  coefficient 
that of slender -wing theory as 
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where Ro is to be determined. When equation (D29) is substituted into equation (D28), 
the expression for  Ro is found to be 

The pressure  coefficients on the upper and lower surfaces  of the wing of the wing-body 
configuration are approximated as 

The expression for  the derivative dg/dx can be obtained from equation (D19) and 
the first of equations (D15) as 

--- dg - A, s in  (1'5) 
dx xt - x0 

r=l 

It can be seen that dg/dx vanishes at the trailing edge where 5 = 0. Thus, the approx- 
imate expression for  the wing-surface pressure coefficient given in equation (D31) van- 
ishes at the trailing edge so that the Kutta condition is satisfied. 

Solution for  Supersonic Flow 

The quasiconical theory of Carafoli et  al. (ref. 22) is used to evaluate the l inear 
lift potential for  supersonic flow. A s  in the subsonic case, the wing body is mapped to a 
wing alone with the transformation given in equation (C9). 
figure 38. 

This mapping is depicted in 

The form which is assumed f o r  the potential 
form of the constant A used by Carafoli e t  al. is 

is given by equation (26). The 
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k =  

where the distances bl and b2 and the positions x1 and x2 are depicted in fig- 
ure 39 and where E(k) 
modulus 

is the complete elliptic integral of the second kind with the 

2 
1 - L(M_ 2 - 1)p2'(x1) + Y 2 ' ( X 2 d  4 

- L ( M 2  4 - 1)F2'(x1) +q2 ' (x2J2  

Y 

' I  
\ I  

\ 

I 

X r b2 

A I 
X c c2 

(a) Geometry of Carafoli e t  al. (b) Present  geometry. 

Figure 39.- Wing parameters  for  supersonic solution f o r  

It can be seen that the value of A given by equation (D32) becomes small as q2'(x1) 
becomes small so that the potential 
a form for A given by the equation 

becomes large. In order  to avoid this difficulty, 

A = jc1 -k c2 E(k) 
2cl 

where 
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is used in  this report. The distances c1 and c2 are depicted in figure 39. It can be 
seen f rom the equation fo r  k that a real value for k exists if the wing leading edge is 
sonic o r  subsonic. Consequently, the present method is limited to flow about configura- 
tions with sonic or subsonic leading edges as determined by simple sweep theory. 

Brown and Michael Model for  Subsonic and Supersonic Flow 

The leading-edge separation models of both Brown and Michael (ref. 20) and Smith 
(ref. 39) are for  lift potentials governed by equation (8), the Laplace equation in the c ross -  
flow plane. In this section the Brown and Michael model is generalized fo r  lift potentials 
governed by equation (9) for  subsonic and supersonic flow. It should be noted that Sacks, 
Lundberg, and Hanson (ref. 47) have generalized both the Brown and Michael model and 
the Smith model for  subsonic flow. 

The potential. 

@a = @a 

where @a and 9v 

is written as 

+ +v (D33) 

are the attached flow and the vortex potentials. It is assumed that 
these potentials are governed by the equations 

( l -M_2) -+V2  a2@a 2 @ a = O  
ax 

and 

0335) 
2 v2 9, = 0 

The form of equation (D35) is based on the fact  that the cross-flow derivatives of 
are dominant. 

9v 
The complex potential which satisfies equation (D35) is 

where X, Y, and Yv are given by equations (C2), (C4), and (C20), respectively, and 
where yv(x) is the strength of the vortex core. 

potential is 
The complex velocity associated with the attached-flow portion of the l inear lift 
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The boundary conditions which are used to determine the strength and location of the vor- 
tex core for  a separated-leading-edge flow are the leading-edge Kutta condition and the 
no-force condition on. the system composed of the vortex core and the vorticity feeding 
sheet. These conditions are expressed as 

and 

For the problem of a strake-generated vortex, equation (D38) is not enforced. 

The same general  procedure is used to evaluate the derivatives a@a/ay and 
a@,/az for  subsonic and supersonic flow. It is assumed that the variation of 
cross-flow plane is the same as that of slender-wing theory. 
tial @a is written as 

in the 
Consequently, the poten- 

where X and Y are given by equations (C2) and (C4), respectively, and where R1 is 
a function to be determined. With equations (D24), (D25), and (D40), it can be shown that 
R1 has  the value 

Thus, for subsonic and supersonic flow the complex velocity Va is 

The solution procedure used to find the vortex core '  strength and location is given 
in appendix G. 
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APPROXIMATE FORM O F  FAR-FIELD LIFT POTENTIAL 

FOR SUPERSONIC FLOW 

Heaslet and Lomax (ref. 48) show that the l inear lift potential for supersonic flow 
past  a wing can be written in integral fo rm as 

where Aua is the jump in the x-derivative of the lift potential @a ac ross  the wing 
and where 

R = (x - s ) ~  - - t)2 + ~y \I 
For large values of r the potential ql(x,r)  in the outer expansion (eq. (10)) can be 
written as 

where 

Aua(x,t) dt 

If f '(0) = 0, equation (E2) can be integrated by par t s  to yield 

If the flow is attached a t  the leading edge, f(x) is given by the equation 
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1 
From the resul ts  of appendix C it is seen that equation (E4) is also a reasonable approxi- 
mation fo r  separated-leading-edge flow fo r  the angle-of -attack range considered in this 
report .  For  wings f o r  which the derivative y2'(x) is either constant o r  a slowly varying 
function of x, equation (E3) can be integrated to yield 

1 

Since y2' can be approximated as 

equation (E5) can be written in the form 
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NUMERICAL METHOD 

In this report, the method of successive line overrelaxation is used to solve equa- 
tions (42) and (55). 
in the form shown at the points r > ra(x), where ra(x) is slightly larger  than y2(x). 
Equation (55), which governs the flow a t  the points r < y2(x), is used in the form given. 
In the region y2(x) < r < ra(x), it is assumed that the outer expansion (eq. (10)) is appli- 
cable and that the t e rms  proportional to sin w and cos 2w a r e  governed by equations 
of the form of equation (8) if is obtained from slender-wing theory and by equations 
of the form of equation (9) if is obtained from the theory of Lawrence and Flax or 
from quasiconical theory. Consequently, the equation which governs qo for 
y2(x) < r < ra(x) is 

Equation (42), which governs the flow at the points r > y2(x), is used 

a"qo 1 a y + 1 f'f"' + A - + - -(r 2) = 1112 sin a! 2 
(7- ,,2 r a r  

where 

A = 1 - M 2  - ( y  + 1)M2F0T + sin a! f '  - sin w + sin 2 a! (T-7--- y + 1 f'f" 2ff7) cos 4 
r r 4  

The function h is related to A by equation (49) or  (50). 

Equations (42), (Fl), and (55) can be written as 

where 
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The function +b is equal to cp fo r  r ra and to yo for r 5 r and the functions a, 
F and G are the appropriate known analytical expressions. The gr id  system used is 
virtually the same as that used by Bailey (ref. 28). 
transformation 

In the radial  direction the 

r r = r  +- 
0 b - a v  

is used so that r var ies  f rom ro to rmax as y va r i e s  f rom 0 to 1. The effect of 
the transformation is to concentrate points near  the axis. The constants b and a 
must be appropriately chosen to give the desired point distribution. 
the outer boundary is at infinity. In the vicinity of the body a uniform grid is used for  
the x-coordinate. For M, I 1, the x-grid is stretched downstream and upstream of this 
region in the manner used in reference 28. This stretching continues the x-grid to the 
finite values xmin and xmax. For Moo > 1 the x-grid spacing is uniform throughout. 

the outer radial boundary if that boundary is at infinity is 9 = 0. For M, > 1, this con- 
dition is applied only at  xmin 
since the outer boundary is located a t  a finite value of r if the free s t ream is super- 
sonic. The boundary condition which is applied a t  the inner boundary is given by equa- 
tion (58), and the one which is used at  the outer boundary if that boundary is to represent  
a tunnel wall is given by equation (28) if the wall is solid, by equation (32) if it is slotted, 
and by equation (33) if i t  is porous. 

Note that if b = a, 

For M, 5 1, the boundary condition which is applied a t  xmin and xmax and at  

since no downstream boundary condition is required and 

The partial  derivatives with respect  to x are approximated with central  finite- 
difference expressions if the local Mach number M < 1 and backward expressions if 
M Z 1. Let  the indices for the x- and r-coordinates be j and k, respectively, and 
le t  

Ax2 = xj - xj-l 

Ax3 = X j + l  - xj 

The central-difference expressions are 

075) Ax2 Ax3 - Ax2 Ax3 (2)c = Ax3 (AX, + Ax3 Ax2 &3 +Lk - Ax2 (Ax2 + Ax3 
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and the backward expressions are 

2 
At strong shock waves the nonlinear t e rm 

Murman shock operator (ref. 29) which is written as 

A* in equation (F2) is replaced by the 2 ax 

The partial derivatives with respect to the radial coordinate a r e  written as 

- - r W  aar ( ar  ) = A  k q j,k-1 - Bkqj,k 'kqj,k+l 

where 

2(b - aqk)4 

% =  b2(Aq)2 
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except at points on the boundaries. At the inner boundary the radial difference expres- 
sion is written as 

and at the outer boundary as 

When the computational plane is the horizontal plane (w = 0), the velocity potential 
Modifications to the finite- is calculated both above and beneath the wing for  r < y2(x). 

difference formulas need to be made at several  points neighboring the wing. 
point j,k l ies  just ahead o r  just outside of the leading edge, then the value of +j+l,k 

j,k-1 in equations (F5) and (F6) or  the value of IC/ 
the average of the values above and beneath the wing. If the point j,k l ies  at the trailing 
edge of the wing and the flow at this point is subsonic, the potential jump across  the vortex 
sheet at the point j+l,k is se t  equal to that across  the wing at the point j-1,k in order  
to satisfy the Kutta condition. 

If the 

in equation (F7), respectively, must be 

The line relaxation process  used here is the same as that used by Murman and Cole 
(ref.  8), Bailey (ref. 28), and others. A relaxation factor of 1 is used at all points where 
the flow is supersonic. At points where the flow is subsonic, the value of the relaxation 
factor is between 1 and 2. 
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SOLUTION PROCEDURE FOR GENERALIZED BROWN AND MICHAEL 

SEPARATED-FLOW MODEL FOR WING-BODY COMBINATIONS 

It appears that a computer program fo r  the Brown and Michael model for separated 
flow past  a general  nonconical wing-body configuration h a s  not been set up previously. 
Smith (ref. 49) has  set up a computer program fo r  nonconical wings, and Wei, Levinsky, 
and Su (ref. 31) have set up a program which uses  the more complicated model of Mangler 
and Smith to calculate the flow over nonconical wing bodies. However, the wing bodies 
which can be treated by the method of reference 31 must have conical wing-body noses. 

The equations for the Mach number dependent Brown and Michael model for sepa- 
rated flow past  a general  nonconical wing-body configuration are 

y v 2  = A b h +  / r l h  + z  '(/k2 (q2 + E 2 )  + 4 r d 2  - 16q2h2r2  - f2 (t2 + q 2 )  + 41-21)} 

Yvhv + ,VTV 

% =  h(Av2 + rv2) 

yvrv - ,vXv A, = 
h(Xv2 + rv2) 
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By = (yv2 - zV2)2 - 4y 2 2  Z 
v v  

r 4 B  

By2 + B, 
b y  

2 ByO = 1 - 

C y = A B  y zo + A B  z yo 

D = (Ay 2 - Az2)By0 - 2AyAzBz0 
Y 

Dyo = 1 -t 

2 
6Yvzvrb 

DzO = 
(Yv2 + zv2)2 

ByODyo + BzODzO 
2 E =  Y 

ByO2 + BzO 
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E, = ByOD20 - BzODyO 

ByO2 + BZO2 

Y, E, - D, + 2, ( E Y - DY) 
Y, + zv2 2 

Fy = 

Yv Ey - D Y + Z, E, - D, 
F, = - 

2 Y, +z,2 

For separated-leading-edge flow, 

y v 2  = ih(Av + <)Rl 

M,=--- - -  zvhR1i 2% Av? 7V 

N =  (yv - Y2)h7vR1 
Y YVXV 

,vh7vR1 
YVXV 

N, = 

yv - y2 oy = h 
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,V Pz = - 
R1 

For a strake-generated vortex yv is constant and My’ M,, NY’ N,, oy, 0,’ PY’ 
and P, vanish. 

By oh Qy = 

(y.2 + zv2) (By: + B,:) 

Bzoh Qz = 

Ry = Qy (yv., + ZVTV) - Qz ( W V  - zvxv) 

Rz = Qy (Yv5 - “vx,) + Qz (yv., + ZVTV) 

Gyo = 
r;(Yy2 - zv2) 

(Yy2 + z;)2 

2 
2Yvzvrb GzO = - 

(Yy2 + z:)2 

Gy = 
yv (1 - Gyo) + zvGzo 
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- YvByO + ZvB,O Gy = 

G, = YvB,O - ZvByO 

(yv2 + 52)(Byo2 + B,:) 

H21 = hR, + M, 

H 2 2 = h R  +N, 
Y 

- (.,Av - R , T ~  + O  + 
Y 

-- dAv - H1H22 - H2H12 

dx HllH22 - H21H12 
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dTv H2H11 - H1H21 

dx HllH22 - H21H12 

These equations are solved by fourth-order Runge-Kutta integration. 
has  a value of 1 if the attached-flow solution is obtained f rom slender-wing theory. If 
the approximate subsonic or  supersonic attached-f low solutions are used, the function R1 
is evaluated with equation (D41). Note that it is only through equation (D41) that the Mach 
number influences the solution. 

The function R1 

In order  to s t a r t  the solution at  a point just downstream of where the leading edge 
of the wing emerges from the body surface, the configuration in the vicinity of the junc- 
tion is approximated by a slender wing with the semispan y2 - rb << rb a t  an  angle of 
attack of 2 a .  This approximation is depicted in figure 40. 

Exact Approximate 

u,sin CY L 2  u,sin CY 

Figure 40.- Approximation used to s t a r t  calculation. 

The empirical formulation of Jobe (ref. 50) is used to determine initial values for  
yv and zv. The starting equations are 

2 
Zo = -0.00451 + 0.56114 

2 = 1 +- ' 2 k v  - rb) - (y2 - rb)2 - '.-) 
2rb 

1 02 
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